New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, NY 12208.
Latvian Biomedical Research and Study Centre, Riga LV-1067, Latvia.
Proc Natl Acad Sci U S A. 2023 Jul 4;120(27):e2301549120. doi: 10.1073/pnas.2301549120. Epub 2023 Jun 26.
Modern infectious disease outbreaks often involve changes in host tropism, the preferential adaptation of pathogens to specific hosts. The Lyme disease-causing bacterium () is an ideal model to investigate the molecular mechanisms of host tropism, because different variants of these tick-transmitted bacteria are distinctly maintained in rodents or bird reservoir hosts. To survive in hosts and escape complement-mediated immune clearance, produces the outer surface protein CspZ that binds the complement inhibitor factor H (FH) to facilitate bacterial dissemination in vertebrates. Despite high sequence conservation, CspZ variants differ in human FH-binding ability. Together with the FH polymorphisms between vertebrate hosts, these findings suggest that minor sequence variation in this bacterial outer surface protein may confer dramatic differences in host-specific, FH-binding-mediated infectivity. We tested this hypothesis by determining the crystal structure of the CspZ-human FH complex, and identifying minor variation localized in the FH-binding interface yielding bird and rodent FH-specific binding activity that impacts infectivity. Swapping the divergent region in the FH-binding interface between rodent- and bird-associated CspZ variants alters the ability to promote rodent- and bird-specific early-onset dissemination. We further linked these loops and respective host-specific, complement-dependent phenotypes with distinct CspZ phylogenetic lineages, elucidating evolutionary mechanisms driving host tropism emergence. Our multidisciplinary work provides a novel molecular basis for how a single, short protein motif could greatly modulate pathogen host tropism.
现代传染病的爆发往往涉及宿主嗜性的变化,即病原体对特定宿主的优先适应。导致莱姆病的细菌 () 是研究宿主嗜性分子机制的理想模型,因为这些通过蜱传播的细菌的不同变体在啮齿动物或鸟类储存宿主中明显存在。为了在宿主中生存并逃避补体介导的免疫清除, 产生了外表面蛋白 CspZ,它结合补体抑制剂因子 H (FH) 以促进脊椎动物中的细菌传播。尽管序列高度保守,但 CspZ 变体在与人 FH 结合的能力上存在差异。结合脊椎动物宿主之间的 FH 多态性,这些发现表明这种细菌外表面蛋白的微小序列变异可能导致在宿主特异性、FH 结合介导的感染力方面存在显著差异。我们通过确定 CspZ-人 FH 复合物的晶体结构并鉴定定位于 FH 结合界面的微小变异来测试这一假设,这些变异导致了鸟类和啮齿动物 FH 特异性结合活性,从而影响了感染力。在与啮齿动物和鸟类相关的 CspZ 变体之间的 FH 结合界面的分歧区域进行交换,改变了促进啮齿动物和鸟类特异性早期传播的能力。我们进一步将这些环和各自的宿主特异性、补体依赖性表型与不同的 CspZ 系统发育谱系联系起来,阐明了驱动宿主嗜性出现的进化机制。我们的多学科工作为单一短蛋白基序如何极大地调节病原体宿主嗜性提供了新的分子基础。