Pandey Rajendra Kumar, Rathore Yogesh Kumar
Department of Computer Science and Engineering, Shri Shankaracharya Institute of Professional Management and Technology, Raipur, (C.G.), India.
Med Biol Eng Comput. 2025 May;63(5):1271-1287. doi: 10.1007/s11517-024-03273-y. Epub 2025 Jan 4.
This study presents an advanced methodology for 3D heart reconstruction using a combination of deep learning models and computational techniques, addressing critical challenges in cardiac modeling and segmentation. A multi-dataset approach was employed, including data from the UK Biobank, MICCAI Multi-Modality Whole Heart Segmentation (MM-WHS) challenge, and clinical datasets of congenital heart disease. Preprocessing steps involved segmentation, intensity normalization, and mesh generation, while the reconstruction was performed using a blend of statistical shape modeling (SSM), graph convolutional networks (GCNs), and progressive GANs. The statistical shape models were utilized to capture anatomical variations through principal component analysis (PCA), while GCNs refined the meshes derived from segmented slices. Synthetic data generated by progressive GANs enabled augmentation, particularly useful for congenital heart conditions. Evaluation of the reconstruction accuracy was performed using metrics such as Dice similarity coefficient (DSC), Chamfer distance, and Hausdorff distance, with the proposed framework demonstrating superior anatomical precision and functional relevance compared to traditional methods. This approach highlights the potential for automated, high-resolution 3D heart reconstruction applicable in both clinical and research settings. The results emphasize the critical role of deep learning in enhancing anatomical accuracy, particularly for rare and complex cardiac conditions. This paper is particularly important for researchers wanting to utilize deep learning in cardiac imaging and 3D heart reconstruction, bringing insights into the integration of modern computational methods.
本研究提出了一种先进的方法,通过结合深度学习模型和计算技术进行三维心脏重建,解决心脏建模和分割中的关键挑战。采用了多数据集方法,包括来自英国生物银行的数据、医学图像计算与计算机辅助干预国际会议(MICCAI)多模态全心脏分割(MM-WHS)挑战赛的数据以及先天性心脏病的临床数据集。预处理步骤包括分割、强度归一化和网格生成,而重建则使用统计形状建模(SSM)、图卷积网络(GCN)和渐进生成对抗网络(progressive GAN)的组合来进行。统计形状模型通过主成分分析(PCA)用于捕捉解剖变异,而GCN则对从分割切片派生的网格进行细化。渐进GAN生成的合成数据实现了数据增强,这对先天性心脏病尤为有用。使用诸如骰子相似系数(DSC)、倒角距离和豪斯多夫距离等指标对重建精度进行评估,与传统方法相比,所提出的框架显示出更高的解剖精度和功能相关性。这种方法凸显了适用于临床和研究环境的自动化、高分辨率三维心脏重建的潜力。结果强调了深度学习在提高解剖准确性方面的关键作用,特别是对于罕见和复杂的心脏疾病。本文对于希望在心脏成像和三维心脏重建中利用深度学习的研究人员尤为重要,为现代计算方法的整合带来了见解。