Suppr超能文献

基于新型深度图谱网络的心脏电影磁共振图像右心室自动分割

Automatic right ventricular segmentation for cine cardiac magnetic resonance images based on a new deep atlas network.

作者信息

Wang Lijia, Su Hanlu, Liu Peng

机构信息

School of Health Science and Engineering USST, Shanghai, China.

出版信息

Med Phys. 2023 Nov;50(11):7060-7070. doi: 10.1002/mp.16547. Epub 2023 Jun 9.

Abstract

BACKGROUND

The high morbidity and mortality of heart disease present a significant threat to human health. The development of methods for the quick and accurate diagnosis of heart diseases, enabling their effective treatment, has become a key issue of concern. Right ventricular (RV) segmentation from cine cardiac magnetic resonance (CMR) images plays a significant role in evaluating cardiac function for clinical diagnosis and prognosis. However, due to the complex structure of the RV, traditional segmentation methods are ineffective for RV segmentation.

PURPOSE

In this paper, we propose a new deep atlas network to improve the learning efficiency and segmentation accuracy of a deep learning network by integrating multi-atlas.

METHODS

First, a dense multi-scale U-net (DMU-net) is presented to acquire transformation parameters from atlas images to target images. The transformation parameters map the atlas image labels to the target image labels. Second, using a spatial transformation layer, the atlas images are deformed based on these parameters. Finally, the network is optimized by backpropagation with two loss functions where the mean squared error function (MSE) is used to measure the similarity of the input images and transformed images. Further, the Dice metric (DM) is used to quantify the overlap between the predicted contours and the ground truth. In our experiments, 15 datasets are used in testing, and 20 cine CMR images are selected as atlas.

RESULTS

The mean values and standard deviations for the DM and Hausdorff distance are 0.871 and 4.67 mm, 0.104 and 2.528 mm, respectively. The correlation coefficients of endo-diastolic volume, endo-systolic volume, ejection fraction, and stroke volume are 0.984, 0.926, 0.980, and 0.991, respectively, and the mean differences between all of the mentioned parameters are 3.2, -1.7, 0.02, and 4.9, respectively. Most of these differences are within the allowable range of 95%, indicating that the results are acceptable and show good consistency. The segmentation results obtained in this method are compared with those obtained by other methods that provide satisfactory performance. The other methods provide better segmentation effects at the base, but either no segmentation or the wrong segmentation at the top, which demonstrate that the deep atlas network can improve top-area segmentation accuracy.

CONCLUSION

Our results indicate that the proposed method can achieve better segmentation results than the previous methods, with both high relevance and consistency, and has the potential for clinical application.

摘要

背景

心脏病的高发病率和高死亡率对人类健康构成了重大威胁。开发能够快速准确诊断心脏病并实现有效治疗的方法已成为备受关注的关键问题。从心脏电影磁共振(CMR)图像中分割右心室(RV)在评估心脏功能以进行临床诊断和预后方面起着重要作用。然而,由于右心室结构复杂,传统分割方法对右心室分割效果不佳。

目的

本文提出一种新的深度图谱网络,通过整合多图谱来提高深度学习网络的学习效率和分割精度。

方法

首先,提出一种密集多尺度U型网络(DMU-net),以获取从图谱图像到目标图像的变换参数。这些变换参数将图谱图像标签映射到目标图像标签。其次,使用空间变换层,根据这些参数对图谱图像进行变形。最后,通过带有两个损失函数的反向传播对网络进行优化,其中均方误差函数(MSE)用于衡量输入图像和变换后图像的相似度。此外,使用Dice度量(DM)来量化预测轮廓与真实轮廓之间的重叠。在我们的实验中,15个数据集用于测试,20幅心脏电影磁共振图像被选作图谱。

结果

DM和豪斯多夫距离的平均值和标准差分别为0.871和4.67毫米、0.104和2.528毫米。舒张末期容积、收缩末期容积、射血分数和每搏输出量的相关系数分别为0.984、0.926、0.980和0.991,上述所有参数之间的平均差异分别为3.2、-1.7、0.02和4.9。这些差异大多在95%的允许范围内,表明结果是可接受的且具有良好的一致性。将该方法获得的分割结果与其他具有良好性能的方法获得的结果进行比较。其他方法在底部提供了更好的分割效果,但在顶部要么没有分割要么分割错误,这表明深度图谱网络可以提高顶部区域的分割精度。

结论

我们的结果表明,所提出的方法能够取得比先前方法更好的分割结果,具有高度的相关性和一致性,并且具有临床应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验