Suppr超能文献

用于肺癌放射治疗期间 3D 运动估计和容积成像的患者特异性深度学习框架。

A patient-specific deep learning framework for 3D motion estimation and volumetric imaging during lung cancer radiotherapy.

机构信息

Image X Institute, University of Sydney, Sydney, NSW, Australia.

Sydney Neuroimaging Analysis Centre, University of Sydney, Sydney, Australia.

出版信息

Phys Med Biol. 2023 Jul 10;68(14). doi: 10.1088/1361-6560/ace1d0.

Abstract

. Respiration introduces a constant source of irregular motion that poses a significant challenge for the precise irradiation of thoracic and abdominal cancers. Current real-time motion management strategies require dedicated systems that are not available in most radiotherapy centers. We sought to develop a system that estimates and visualises the impact of respiratory motion in 3D given the 2D images acquired on a standard linear accelerator.. In this paper we introduce, a patient-specific deep learning framework that achieves 3D motion estimation and volumetric imaging using the data and resources available in standard clinical settings. Here we perform a simulation study of this framework using imaging data from two lung cancer patients.. Using 2D images as input and 3D-3Dregistrations as ground-truth,was able to continuously predict 3D tumor motion with mean errors of 0.1 ± 0.5, -0.6 ± 0.8, and 0.0 ± 0.2 mm along the left-right, superior-inferior, and anterior-posterior axes respectively.also predicted 3D thoracoabdominal motion with mean errors of -0.1 ± 0.3, -0.1 ± 0.6, and -0.2 ± 0.2 mm respectively. Moreover, volumetric imaging was achieved with mean average error 0.0003, root-mean-squared error 0.0007, structural similarity 1.0 and peak-signal-to-noise ratio 65.8.. The results of this study demonstrate the possibility of achieving 3D motion estimation and volumetric imaging during lung cancer treatments on a standard linear accelerator.

摘要

呼吸会引入不断变化的运动,这给胸部和腹部癌症的精确放疗带来了重大挑战。目前的实时运动管理策略需要专用系统,但大多数放射治疗中心都没有配备这些系统。我们旨在开发一种系统,该系统可以根据标准线性加速器上获取的 2D 图像来估计和可视化 3D 呼吸运动的影响。在本文中,我们介绍了一种基于深度学习的患者特定框架,该框架使用标准临床环境中可用的数据和资源实现 3D 运动估计和容积成像。在此,我们使用两名肺癌患者的成像数据对该框架进行了模拟研究。使用 2D 图像作为输入,3D-3D 配准作为ground-truth,能够以 0.1 ± 0.5、-0.6 ± 0.8 和 0.0 ± 0.2mm 的平均误差连续预测 3D 肿瘤运动,分别沿左右、上下和前后轴。还分别预测了 3D 胸腹部运动,平均误差为-0.1 ± 0.3、-0.1 ± 0.6 和-0.2 ± 0.2mm。此外,容积成像的平均误差为 0.0003,均方根误差为 0.0007,结构相似性为 1.0,峰值信噪比为 65.8。这项研究的结果表明,在标准线性加速器上进行肺癌治疗时,实现 3D 运动估计和容积成像成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验