Molecular Genetics Section, Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA.
Departments of Orthopedic Surgery and Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
Aging Cell. 2023 Sep;22(9):e13903. doi: 10.1111/acel.13903. Epub 2023 Jun 26.
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder affecting tissues of mesenchymal origin. Most individuals with HGPS harbor a de novo c.1824C > T (p.G608G) mutation in the gene encoding lamin A (LMNA), which activates a cryptic splice donor site resulting in production of the toxic "progerin" protein. Clinical manifestations include growth deficiency, lipodystrophy, sclerotic dermis, cardiovascular defects, and bone dysplasia. Here we utilized the Lmna knock-in (KI) mouse model of HGPS to further define mechanisms of bone loss associated with normal and premature aging disorders. Newborn skeletal staining of KI mice revealed altered rib cage shape and spinal curvature, and delayed calvarial mineralization with increased craniofacial and mandibular cartilage content. MicroCT analysis and mechanical testing of adult femurs indicated increased fragility associated with reduced bone mass, recapitulating the progressive bone deterioration that occurs in HGPS patients. We investigated mechanisms of bone loss in KI mice at the cellular level in bone cell populations. Formation of wild-type and KI osteoclasts from marrow-derived precursors was inhibited by KI osteoblast-conditioned media in vitro, suggesting a secreted factor(s) responsible for decreased osteoclasts on KI trabecular surfaces in vivo. Cultured KI osteoblasts exhibited abnormal differentiation characterized by reduced deposition and mineralization of extracellular matrix with increased lipid accumulation compared to wild-type, providing a mechanism for altered bone formation. Furthermore, quantitative analyses of KI transcripts confirmed upregulation of adipogenic genes both in vitro and in vivo. Thus, osteoblast phenotypic plasticity, inflammation and altered cellular cross-talk contribute to abnormal bone formation in HGPS mice.
亨廷顿氏舞蹈症-吉福德早衰综合征(Hutchinson-Gilford progeria syndrome,HGPS)是一种影响间充质组织的过早衰老疾病。大多数 HGPS 患者携带编码核纤层蛋白 A(lamin A,LMNA)的基因中的从头 c.1824C>T(p.G608G)突变,该突变激活了一个隐蔽的剪接供体位点,导致毒性“progerin”蛋白的产生。临床表现包括生长发育迟缓、脂肪营养不良、硬皮病、心血管缺陷和骨发育不良。在这里,我们利用亨廷顿氏舞蹈症-吉福德早衰综合征的 Lmna 基因敲入(knock-in,KI)小鼠模型,进一步确定与正常和过早衰老疾病相关的骨丢失机制。新生 KI 小鼠骨骼染色显示胸廓形状和脊柱曲率改变,颅骨矿化延迟,颅面和下颌软骨含量增加。成年股骨的 microCT 分析和机械测试表明,骨量减少与脆弱性增加相关,这与 HGPS 患者中发生的进行性骨恶化相吻合。我们在骨细胞群的细胞水平上研究了 KI 小鼠的骨丢失机制。体外实验中,来自骨髓衍生前体的野生型和 KI 破骨细胞的形成受到 KI 成骨细胞条件培养基的抑制,这表明有一个分泌因子(s)负责体内 KI 小梁表面破骨细胞的减少。与野生型相比,培养的 KI 成骨细胞表现出异常分化的特征,细胞外基质的沉积和矿化减少,脂质积累增加,为骨形成的改变提供了机制。此外,KI 转录本的定量分析证实了体外和体内脂肪生成基因的上调。因此,成骨细胞表型可塑性、炎症和细胞间通讯的改变导致 HGPS 小鼠的异常骨形成。