Suppr超能文献

利用截断的 Schatten p-范数预测潜在的小分子-miRNA 关联。

Predicting potential small molecule-miRNA associations utilizing truncated schatten p-norm.

机构信息

College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China.

College of Information and Control Engineering, Qingdao University of Technology, Qingdao 266580, China.

出版信息

Brief Bioinform. 2023 Jul 20;24(4). doi: 10.1093/bib/bbad234.

Abstract

MicroRNAs (miRNAs) have significant implications in diverse human diseases and have proven to be effectively targeted by small molecules (SMs) for therapeutic interventions. However, current SM-miRNA association prediction models do not adequately capture SM/miRNA similarity. Matrix completion is an effective method for association prediction, but existing models use nuclear norm instead of rank function, which has some drawbacks. Therefore, we proposed a new approach for predicting SM-miRNA associations by utilizing the truncated schatten p-norm (TSPN). First, the SM/miRNA similarity was preprocessed by incorporating the Gaussian interaction profile kernel similarity method. This identified more SM/miRNA similarities and significantly improved the SM-miRNA prediction accuracy. Next, we constructed a heterogeneous SM-miRNA network by combining biological information from three matrices and represented the network with its adjacency matrix. Finally, we constructed the prediction model by minimizing the truncated schatten p-norm of this adjacency matrix and we developed an efficient iterative algorithmic framework to solve the model. In this framework, we also used a weighted singular value shrinkage algorithm to avoid the problem of excessive singular value shrinkage. The truncated schatten p-norm approximates the rank function more closely than the nuclear norm, so the predictions are more accurate. We performed four different cross-validation experiments on two separate datasets, and TSPN outperformed various most advanced methods. In addition, public literature confirms a large number of predictive associations of TSPN in four case studies. Therefore, TSPN is a reliable model for SM-miRNA association prediction.

摘要

微小 RNA(miRNAs)在多种人类疾病中具有重要意义,并且已被证明可以通过小分子(SMs)有效靶向治疗干预。然而,当前的 SM-miRNA 关联预测模型不能充分捕捉 SM/miRNA 的相似性。矩阵补全是一种有效的关联预测方法,但现有模型使用核范数而不是秩函数,这存在一些缺点。因此,我们提出了一种利用截断的 schatten p-范数(TSPN)预测 SM-miRNA 关联的新方法。首先,通过结合高斯相互作用轮廓核相似度方法对 SM/miRNA 的相似度进行预处理。这确定了更多的 SM/miRNA 相似度,并显著提高了 SM-miRNA 的预测准确性。接下来,我们通过整合来自三个矩阵的生物信息构建了一个异质的 SM-miRNA 网络,并使用其邻接矩阵表示该网络。最后,通过最小化该邻接矩阵的截断 schatten p-范数来构建预测模型,并开发了一个有效的迭代算法框架来解决该模型。在这个框架中,我们还使用加权奇异值收缩算法来避免奇异值过度收缩的问题。截断的 schatten p-范数比核范数更接近秩函数,因此预测更准确。我们在两个独立的数据集上进行了四次不同的交叉验证实验,TSPN 优于各种最先进的方法。此外,公共文献在四个案例研究中证实了 TSPN 大量预测关联的存在。因此,TSPN 是一种可靠的 SM-miRNA 关联预测模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验