College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450003, China.
Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
Biosensors (Basel). 2023 Jun 19;13(6):665. doi: 10.3390/bios13060665.
The development of multifunctional biomimetic nanozymes with high catalytic activity and sensitive response is rapidly advancing. The hollow nanostructures, including metal hydroxides, metal-organic frameworks, and metallic oxides, possess excellent loading capacity and a high surface area-to-mass ratio. This characteristic allows for the exposure of more active sites and reaction channels, resulting in enhanced catalytic activity of nanozymes. In this work, based on the coordinating etching principle, a facile template-assisted strategy for synthesizing Fe(OH) nanocages by using CuO nanocubes as the precursors was proposed. The unique three-dimensional structure of Fe(OH) nanocages endows it with excellent catalytic activity. Herein, in the light of Fe(OH)-induced biomimetic nanozyme catalyzed reactions, a self-tuning dual-mode fluorescence and colorimetric immunoassay was successfully constructed for ochratoxin A (OTA) detection. For the colorimetric signal, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) can be oxidized by Fe(OH) nanocages to form a color response that can be preliminarily identified by the human eye. For the fluorescence signal, the fluorescence intensity of 4-chloro-1-naphthol (4-CN) can be quantitatively quenched by the valence transition of Ferric ion in Fe(OH) nanocages. Due to the significant self-calibration, the performance of the self-tuning strategy for OTA detection was substantially enhanced. Under the optimized conditions, the developed dual-mode platform accomplishes a wide range of 1 ng/L to 5 μg/L with a detection limit of 0.68 ng/L (S/N = 3). This work not only develops a facile strategy for the synthesis of highly active peroxidase-like nanozyme but also achieves promising sensing platform for OTA detection in actual samples.
多功能仿生纳米酶具有高催化活性和敏感响应的特性,其发展迅速。中空纳米结构,包括金属氢氧化物、金属有机骨架和金属氧化物,具有优异的负载能力和高表面积与质量比。这一特性使得更多的活性位点和反应通道暴露出来,从而提高了纳米酶的催化活性。在这项工作中,基于配位刻蚀原理,提出了一种简便的模板辅助策略,以氧化铜纳米立方为前体制备 Fe(OH)纳米笼。Fe(OH)纳米笼的独特三维结构赋予了它优异的催化活性。在此,根据 Fe(OH)诱导的仿生纳米酶催化反应,成功构建了一种自调谐双模式荧光和比色免疫测定法,用于检测赭曲霉毒素 A (OTA)。对于比色信号,2,2'-联氮-双(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS)可被 Fe(OH)纳米笼氧化,形成可通过肉眼初步识别的颜色响应。对于荧光信号,4-氯-1-萘酚(4-CN)的荧光强度可以通过 Fe(OH)纳米笼中铁离子的价态转变被定量猝灭。由于显著的自校准作用,自调谐策略用于 OTA 检测的性能得到了显著提高。在优化条件下,所开发的双模式平台实现了 1ng/L 至 5μg/L 的宽检测范围,检测限为 0.68ng/L(S/N=3)。这项工作不仅开发了一种简便的方法来合成高活性过氧化物酶样纳米酶,而且还实现了用于实际样品中 OTA 检测的有前途的传感平台。