Suppr超能文献

基于智能手机的深度学习系统对水果作物上的[具体内容缺失]进行实时检测与分类:初步结果

Real-Time Detection and Classification of on Fruit Crops with Smartphone-Based Deep Learning System: Preliminary Results.

作者信息

Niyigena Gildas, Lee Sangjun, Kwon Soonhwa, Song Daebin, Cho Byoung-Kwan

机构信息

Department of Smart Agricultural System, Chungnam National University, Daejeon 34134, Republic of Korea.

Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.

出版信息

Insects. 2023 Jun 5;14(6):523. doi: 10.3390/insects14060523.

Abstract

This study proposes a deep-learning-based system for detecting and classifying Hood, a highly invasive insect pest that causes significant economic losses to fruit crops worldwide. The system uses yellow sticky traps and a deep learning model to detect the presence of thrips in real time, allowing farmers to take prompt action to prevent the spread of the pest. To achieve this, several deep learning models are evaluated, including YOLOv5, Faster R-CNN, SSD MobileNetV2, and EfficientDet-D0. EfficientDet-D0 was integrated into the proposed smartphone application for mobility and usage in the absence of Internet coverage because of its smaller model size, fast inference time, and reasonable performance on the relevant dataset. This model was tested on two datasets, in which thrips and non-thrips insects were captured under different lighting conditions. The system installation took up 13.5 MB of the device's internal memory and achieved an inference time of 76 ms with an accuracy of 93.3%. Additionally, this study investigated the impact of lighting conditions on the performance of the model, which led to the development of a transmittance lighting setup to improve the accuracy of the detection system. The proposed system is a cost-effective and efficient alternative to traditional detection methods and provides significant benefits to fruit farmers and the related ecosystem.

摘要

本研究提出了一种基于深度学习的系统,用于检测和分类蓟马,这是一种极具入侵性的害虫,给全球水果作物造成了重大经济损失。该系统使用黄色粘虫板和深度学习模型实时检测蓟马的存在,使农民能够迅速采取行动防止害虫蔓延。为实现这一目标,对包括YOLOv5、Faster R-CNN、SSD MobileNetV2和EfficientDet-D0在内的多个深度学习模型进行了评估。由于EfficientDet-D0模型尺寸较小、推理时间快且在相关数据集上性能合理,因此被集成到所提出的智能手机应用程序中,以便在没有网络覆盖的情况下实现移动性和使用。该模型在两个数据集上进行了测试,在不同光照条件下捕获了蓟马和非蓟马昆虫。系统安装占用了设备13.5MB的内部内存,推理时间为76毫秒,准确率为93.3%。此外,本研究调查了光照条件对模型性能的影响,从而开发了一种透光照明设置以提高检测系统的准确性。所提出的系统是传统检测方法的一种经济高效的替代方案,为果农和相关生态系统带来了显著益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e4f/10299485/831854b1b04b/insects-14-00523-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验