Suppr超能文献

一种用于径向磁共振图像重建的端到端递归神经网络。

An End-to-End Recurrent Neural Network for Radial MR Image Reconstruction.

机构信息

Neuroscience Research Institute, Gachon University, Incheon 21565, Korea.

Department of Neuroscience, College of Medicine, Gachon University, Incheon 21565, Korea.

出版信息

Sensors (Basel). 2022 Sep 26;22(19):7277. doi: 10.3390/s22197277.

Abstract

Recent advances in deep learning have contributed greatly to the field of parallel MR imaging, where a reduced amount of data are acquired to accelerate imaging time. In our previous work, we have proposed a deep learning method to reconstruct MR images directly from data acquired with Cartesian trajectories. However, MRI utilizes various non-Cartesian trajectories, such as radial trajectories, with various numbers of multi-channel RF coils according to the purpose of an MRI scan. Thus, it is important for a reconstruction network to efficiently unfold aliasing artifacts due to undersampling and to combine multi-channel data into single-channel data. In this work, a neural network named 'ETER-net' is utilized to reconstruct an MR image directly from data acquired with Cartesian and non-Cartesian trajectories and multi-channel RF coils. In the proposed image reconstruction network, the domain transform network converts data into a rough image, which is then refined in the following network to reconstruct a final image. We also analyze loss functions including adversarial and perceptual losses to improve the network performance. For experiments, we acquired data at a 3T MRI scanner with Cartesian and radial trajectories to show the learning mechanism of the direct mapping relationship between the and the corresponding image by the proposed network and to demonstrate the practical applications. According to our experiments, the proposed method showed satisfactory performance in reconstructing images from undersampled single- or multi-channel data with reduced image artifacts. In conclusion, the proposed method is a deep-learning-based MR reconstruction network, which can be used as a unified solution for parallel MRI, where data are acquired with various scanning trajectories.

摘要

深度学习的最新进展极大地推动了并行磁共振成像领域的发展,该领域通过采集较少的数据来加速成像时间。在我们之前的工作中,我们提出了一种从笛卡尔轨迹采集的数据中直接重建磁共振图像的深度学习方法。然而,磁共振成像利用各种非笛卡尔轨迹,如径向轨迹,并根据磁共振扫描的目的使用各种多通道射频线圈。因此,对于重建网络来说,有效地展开由于欠采样而产生的混叠伪影,并将多通道数据组合成单通道数据是很重要的。在这项工作中,我们利用一种名为“ETER-net”的神经网络,直接从笛卡尔和非笛卡尔轨迹以及多通道射频线圈采集的数据中重建磁共振图像。在提出的图像重建网络中,域变换网络将数据转换为粗糙图像,然后在后续网络中进行细化,以重建最终图像。我们还分析了包括对抗和感知损失在内的损失函数,以提高网络性能。为了进行实验,我们在 3T MRI 扫描仪上采集了笛卡尔和径向轨迹的数据,以展示所提出的网络通过学习从对应图像的直接映射关系来学习数据和图像之间的关系,并展示实际应用。根据我们的实验结果,所提出的方法在重建单通道或多通道欠采样数据的图像时表现出了令人满意的性能,并且减少了图像伪影。总之,所提出的方法是一种基于深度学习的磁共振重建网络,可以作为一种通用的解决方案,用于并行磁共振成像,其中可以使用各种扫描轨迹来采集数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验