Suppr超能文献

基于反向传播人工神经网络的化合物与雄激素和雌激素受体结合的预测模型。

Predictive Models for Compound Binding to Androgen and Estrogen Receptors Based on Counter-Propagation Artificial Neural Networks.

作者信息

Stanojević Mark, Sollner Dolenc Marija, Vračko Marjan

机构信息

BiSafe d.o.o., 1000 Ljubljana, Slovenia.

Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.

出版信息

Toxics. 2023 May 26;11(6):486. doi: 10.3390/toxics11060486.

Abstract

Endocrine-disrupting chemicals (EDCs) are exogenous substances that interfere with the normal function of the human endocrine system. These chemicals can affect specific nuclear receptors, such as androgen receptors (ARs) or estrogen receptors (ER) α and β, which play a crucial role in regulating complex physiological processes in humans. It is now more crucial than ever to identify EDCs and reduce exposure to them. For screening and prioritizing chemicals for further experimentation, the use of artificial neural networks (ANN), which allow the modeling of complicated, nonlinear relationships, is most appropriate. We developed six models that predict the binding of a compound to ARs, ERα, or ERβ as agonists or antagonists, using counter-propagation artificial neural networks (CPANN). Models were trained on a dataset of structurally diverse compounds, and activity data were obtained from the CompTox Chemicals Dashboard. Leave-one-out (LOO) tests were performed to validate the models. The results showed that the models had excellent performance with prediction accuracy ranging from 94% to 100%. Therefore, the models can predict the binding affinity of an unknown compound to the selected nuclear receptor based solely on its chemical structure. As such, they represent important alternatives for the safety prioritization of chemicals.

摘要

内分泌干扰化学物质(EDCs)是干扰人体内分泌系统正常功能的外源性物质。这些化学物质可影响特定的核受体,如雄激素受体(ARs)或雌激素受体(ER)α和β,它们在调节人体复杂生理过程中起着关键作用。如今,识别EDCs并减少对它们的接触比以往任何时候都更加重要。为了筛选化学物质并确定其进一步实验的优先级,使用人工神经网络(ANN)最为合适,因为它可以对复杂的非线性关系进行建模。我们使用反向传播人工神经网络(CPANN)开发了六个模型,用于预测化合物作为激动剂或拮抗剂与ARs、ERα或ERβ的结合情况。模型在结构多样的化合物数据集上进行训练,活性数据来自综合毒性化学物质仪表板。进行留一法(LOO)测试以验证模型。结果表明,这些模型具有出色的性能,预测准确率在94%至100%之间。因此,这些模型仅根据未知化合物的化学结构就能预测其与所选核受体的结合亲和力。因此,它们是化学物质安全优先级排序的重要替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e0/10304634/5bbe6fef2a1a/toxics-11-00486-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验