Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy.
Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy.
Toxins (Basel). 2023 May 29;15(6):364. doi: 10.3390/toxins15060364.
OnabotulinumtoxinA (BonT-A) reduces migraine frequency in a considerable portion of patients with migraine. So far, predictive characteristics of response are lacking. Here, we applied machine learning (ML) algorithms to identify clinical characteristics able to predict treatment response. We collected demographic and clinical data of patients with chronic migraine (CM) or high-frequency episodic migraine (HFEM) treated with BoNT-A at our clinic in the last 5 years. Patients received BoNT-A according to the PREEMPT (Phase III Research Evaluating Migraine Prophylaxis Therapy) paradigm and were classified according to the monthly migraine days reduction in the 12 weeks after the fourth BoNT-A cycle, as compared to baseline. Data were used as input features to run ML algorithms. Of the 212 patients enrolled, 35 qualified as excellent responders to BoNT-A administration and 38 as nonresponders. None of the anamnestic characteristics were able to discriminate responders from nonresponders in the CM group. Nevertheless, a pattern of four features (age at onset of migraine, opioid use, anxiety subscore at the hospital anxiety and depression scale (HADS-a) and Migraine Disability Assessment (MIDAS) score correctly predicted response in HFEM. Our findings suggest that routine anamnestic features acquired in real-life settings cannot accurately predict BoNT-A response in migraine and call for a more complex modality of patient profiling.
肉毒杆菌毒素 A(BoNT-A)可降低相当一部分偏头痛患者的偏头痛发作频率。但目前尚缺乏预测反应的特征。在此,我们应用机器学习(ML)算法来识别能够预测治疗反应的临床特征。我们收集了过去 5 年来在我们诊所接受 BoNT-A 治疗的慢性偏头痛(CM)或高频发作性偏头痛(HFEM)患者的人口统计学和临床数据。患者根据 PREEMPT(III 期研究评估偏头痛预防治疗)方案接受 BoNT-A 治疗,并根据第 4 个 BoNT-A 周期后 12 周的每月偏头痛天数减少与基线相比进行分类。将数据用作输入特征来运行 ML 算法。在纳入的 212 名患者中,35 名患者对 BoNT-A 治疗有极好的反应,38 名患者无反应。在 CM 组中,没有任何病史特征能够区分反应者和无反应者。然而,四项特征(偏头痛发病年龄、阿片类药物使用、医院焦虑和抑郁量表(HADS-a)焦虑子评分和偏头痛残疾评估(MIDAS)评分)的模式可以准确预测 HFEM 的反应。我们的发现表明,在现实环境中获得的常规病史特征不能准确预测 BoNT-A 在偏头痛中的反应,并呼吁采用更复杂的患者分析模式。