Suppr超能文献

深度神经网络分析复杂随机电报信号的模型。

Deep neural network analysis models for complex random telegraph signals.

机构信息

Institute for Quantum Computing, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.

Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.

出版信息

Sci Rep. 2023 Jun 27;13(1):10403. doi: 10.1038/s41598-023-37142-9.

Abstract

Time-fluctuating signals are ubiquitous and diverse in many physical, chemical, and biological systems, among which random telegraph signals (RTSs) refer to a series of instantaneous switching events between two discrete levels from single-particle movements. A reliable RTS analysis is a crucial prerequisite to identify underlying mechanisms related to device performance and sensitivity. When numerous levels are involved, complex patterns of multilevel RTSs occur and make their quantitative analysis exponentially difficult, hereby systematic approaches are often elusive. In this work, we present a three-step analysis protocol via progressive knowledge-transfer, where the outputs of the early step are passed onto a subsequent step. Especially, to quantify complex RTSs, we resort to three deep neural network architectures whose trained models can process raw temporal data directly. We furthermore demonstrate the model accuracy extensively with a large dataset of different RTS types in terms of additional background noise types and amplitude size. Our protocol offers structured schemes to extract the parameter values of complex RTSs as imperative information with which researchers can draw meaningful and relevant interpretations and inferences of given devices and systems.

摘要

时变信号在许多物理、化学和生物系统中普遍存在且多样,其中随机电报信号(RTS)是指单个粒子运动中在两个离散水平之间的一系列瞬时切换事件。可靠的 RTS 分析是识别与器件性能和灵敏度相关的潜在机制的关键前提。当涉及多个水平时,会出现复杂的多级 RTS 模式,使其定量分析呈指数级困难,因此系统的方法往往难以捉摸。在这项工作中,我们通过逐步知识转移提出了一个三步分析协议,其中早期步骤的输出传递到后续步骤。特别是,为了量化复杂的 RTS,我们求助于三个深度神经网络架构,其训练模型可以直接处理原始时间数据。我们还通过大量不同 RTS 类型的数据集,根据附加背景噪声类型和幅度大小,广泛展示了模型的准确性。我们的协议提供了提取复杂 RTS 参数值的结构化方案,这些参数值是必要信息,研究人员可以根据这些信息对给定的器件和系统进行有意义和相关的解释和推断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e71/10300117/4acafceb109a/41598_2023_37142_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验