Suppr超能文献

用于交通流预测的基于注意力的时空卷积门控循环单元

Attention-Based Spatial-Temporal Convolution Gated Recurrent Unit for Traffic Flow Forecasting.

作者信息

Zhang Qingyong, Chang Wanfeng, Yin Conghui, Xiao Peng, Li Kelei, Tan Meifang

机构信息

School of Automation, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.

出版信息

Entropy (Basel). 2023 Jun 14;25(6):938. doi: 10.3390/e25060938.

Abstract

Accurate traffic flow forecasting is very important for urban planning and traffic management. However, this is a huge challenge due to the complex spatial-temporal relationships. Although the existing methods have researched spatial-temporal relationships, they neglect the long periodic aspects of traffic flow data, and thus cannot attain a satisfactory result. In this paper, we propose a novel model Attention-Based Spatial-Temporal Convolution Gated Recurrent Unit (ASTCG) to solve the traffic flow forecasting problem. ASTCG has two core components: the multi-input module and the STA-ConvGru module. Based on the cyclical nature of traffic flow data, the data input to the multi-input module are divided into three parts, near-neighbor data, daily-periodic data, and weekly-periodic data, thus enabling the model to better capture the time dependence. The STA-ConvGru module, formed by CNN, GRU, and attention mechanism, can capture both temporal and spatial dependencies of traffic flow. We evaluate our proposed model using real-world datasets and experiments show that the ASTCG model outperforms the state-of-the-art model.

摘要

准确的交通流预测对于城市规划和交通管理非常重要。然而,由于复杂的时空关系,这是一个巨大的挑战。尽管现有方法已经对时空关系进行了研究,但它们忽略了交通流数据的长期周期性特征,因此无法获得令人满意的结果。在本文中,我们提出了一种新颖的基于注意力的时空卷积门控循环单元(ASTCG)模型来解决交通流预测问题。ASTCG有两个核心组件:多输入模块和STA-ConvGru模块。基于交通流数据的周期性,输入到多输入模块的数据被分为三部分,近邻数据、日周期数据和周周期数据,从而使模型能够更好地捕捉时间依赖性。由卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制组成的STA-ConvGru模块可以捕捉交通流的时空依赖性。我们使用真实世界的数据集对我们提出的模型进行评估,实验表明ASTCG模型优于现有最先进的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验