Suppr超能文献

MVSTT:一种用于交通流预测的多视图时空变压器网络。

MVSTT: A Multiview Spatial-Temporal Transformer Network for Traffic-Flow Forecasting.

作者信息

Pu Bin, Liu Jiansong, Kang Yan, Chen Jianguo, Yu Philip S

出版信息

IEEE Trans Cybern. 2024 Mar;54(3):1582-1595. doi: 10.1109/TCYB.2022.3223918. Epub 2024 Feb 9.

Abstract

Accurate traffic-flow prediction remains a critical challenge due to complicated spatial dependencies, temporal factors, and unpredictable events. Most existing approaches focus on single- or dual-view learning and thus face limitations in systematically learning complex spatial-temporal features. In this work, we propose a novel multiview spatial-temporal transformer (MVSTT) network that can effectively learn complex spatial-temporal domain correlations and potential patterns from multiple views. First, we examine a temporal view and design a short-range gated convolution component from a short-term subview, and a long-range gated convolution component from a long-term subview. These two components effectively aggregate knowledge of the temporal domain at multiple granularities and mine patterns of node evolution across time steps. Meanwhile, in the spatial view, we design a dual-graph spatial learning module that captures fixed and dynamic spatial dependencies of nodes, as well as the evolution patterns of edges, from the static and dynamic graph subviews, respectively. In addition, we further design a spatial-temporal transformer to mine different levels of spatial-temporal features through multiview knowledge fusion. Extensive experiments on four real-world traffic datasets show that our method consistently outperforms the state-of-the-art baseline. The code of MVSTT is available at https://github.com/JianSoL/MVSTT.

摘要

由于复杂的空间依赖性、时间因素和不可预测的事件,准确的交通流预测仍然是一项严峻的挑战。大多数现有方法专注于单视图或双视图学习,因此在系统地学习复杂的时空特征方面面临局限性。在这项工作中,我们提出了一种新颖的多视图时空变压器(MVSTT)网络,它可以有效地从多个视图中学习复杂的时空域相关性和潜在模式。首先,我们研究一个时间视图,从短期子视图设计一个短程门控卷积组件,从长期子视图设计一个长程门控卷积组件。这两个组件有效地聚合了多个粒度的时域知识,并挖掘了跨时间步长的节点演化模式。同时,在空间视图中,我们设计了一个双图空间学习模块,分别从静态和动态图子视图中捕获节点的固定和动态空间依赖性以及边的演化模式。此外,我们进一步设计了一个时空变压器,通过多视图知识融合挖掘不同层次的时空特征。在四个真实世界交通数据集上的大量实验表明,我们的方法始终优于现有最先进的基线。MVSTT的代码可在https://github.com/JianSoL/MVSTT获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验