Papenfuss Christina
Faculty of Engineering 2, Hochschule für Technik und Wirtschaft Berlin, Wilhelminenhofstr. 75A, 12459 Berlin, Germany.
Entropy (Basel). 2023 Jun 17;25(6):952. doi: 10.3390/e25060952.
A thermodynamic process is a solution of the balance equations fulfilling the second law of thermodynamics. This implies restrictions on the constitutive relations. The most general way to exploit these restrictions is the method introduced by Liu. This method is applied here, in contrast to most of the literature on relativistic thermodynamic constitutive theory, which goes back to a relativistic extension of the Thermodynamics of Irreversible Processes. In the present work, the balance equations and the entropy inequality are formulated in the special relativistic four-dimensional form for an observer with four-velocity parallel to the particle current. The restrictions on constitutive functions are exploited in the relativistic formulation. The domain of the constitutive functions, the state space, is chosen to include the particle number density, the internal energy density, the space derivatives of these quantities, and the space derivative of the material velocity for a chosen observer. The resulting restrictions on constitutive functions, as well as the resulting entropy production are investigated in the non-relativistic limit, and relativistic correction terms of the lowest order are derived. The restrictions on constitutive functions and the entropy production in the low energy limit are compared to the results of an exploitation of the non-relativistic balance equations and entropy inequality. In the next order of approximation our results are compared to the Thermodynamics of Irreversible Processes.
热力学过程是满足热力学第二定律的平衡方程的解。这意味着对本构关系有约束。利用这些约束的最一般方法是刘提出的方法。与大多数关于相对论热力学本构理论的文献不同,这里应用了这种方法,那些文献可追溯到不可逆过程热力学的相对论扩展。在当前工作中,对于四维速度与粒子流平行的观察者,平衡方程和熵不等式以狭义相对论的四维形式表述。在相对论表述中利用了对本构函数的约束。本构函数的定义域,即状态空间,被选择为包含粒子数密度、内能密度、这些量的空间导数以及选定观察者的物质速度的空间导数。在非相对论极限下研究了对本构函数的所得约束以及所得的熵产生,并推导了最低阶的相对论修正项。将低能极限下对本构函数的约束和熵产生与利用非相对论平衡方程和熵不等式的结果进行比较。在次一级近似中,将我们的结果与不可逆过程热力学进行比较。