Romenski E, Peshkov I, Dumbser M, Fambri F
Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, Novosibirsk 630090, Russia.
Novosibirsk State University, 1 Pirogova st., Novosibirsk 630090, Russia.
Philos Trans A Math Phys Eng Sci. 2020 May;378(2170):20190175. doi: 10.1098/rsta.2019.0175. Epub 2020 Mar 30.
The lack of formulation of macroscopic equations for irreversible dynamics of viscous heat-conducting media compatible with the causality principle of Einstein's special relativity and the Euler-Lagrange structure of general relativity is a long-lasting problem. In this paper, we propose a possible solution to this problem in the framework of SHTC equations. The approach does not rely on postulates of equilibrium irreversible thermodynamics but treats irreversible processes from the non-equilibrium point of view. Thus, each transfer process is characterized by a characteristic velocity of perturbation propagation in the non-equilibrium state, as well as by an intrinsic time/length scale of the dissipative dynamics. The resulting system of governing equations is formulated as a first-order system of hyperbolic equations with relaxation-type irreversible terms. Via a formal asymptotic analysis, we demonstrate that classical transport coefficients such as viscosity, heat conductivity, etc., are recovered in leading terms of our theory as effective transport coefficients. Some numerical examples are presented in order to demonstrate the viability of the approach. This article is part of the theme issue 'Fundamental aspects of nonequilibrium thermodynamics'.
缺乏与爱因斯坦狭义相对论的因果原理以及广义相对论的欧拉 - 拉格朗日结构兼容的粘性热传导介质不可逆动力学的宏观方程的公式化,是一个长期存在的问题。在本文中,我们在SHTC方程的框架内提出了这个问题的一个可能解决方案。该方法不依赖于平衡不可逆热力学的假设,而是从非平衡的角度处理不可逆过程。因此,每个传输过程都由非平衡态下扰动传播的特征速度以及耗散动力学的固有时间/长度尺度来表征。所得的控制方程组被表述为带有弛豫型不可逆项的双曲方程的一阶系统。通过形式渐近分析,我们证明了诸如粘度、热导率等经典传输系数在我们理论的主导项中作为有效传输系数被恢复。给出了一些数值例子以证明该方法的可行性。本文是“非平衡热力学的基本方面”主题问题的一部分。