Alshammari Khulaif, Alotaibi Turki, Alshammari Majed, Alhassan Sultan, Alshammari Alhulw H, Taha Taha Abdel Mohaymen
Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia.
Materials (Basel). 2023 Jun 7;16(12):4218. doi: 10.3390/ma16124218.
In this work, the S@g-CN and CuS@g-CN catalysts were prepared via the polycondensation process. The structural properties of these samples were completed on XRD, FTIR and ESEM techniques. The XRD pattern of S@g-CN presents a sharp peak at 27.2° and a weak peak at 13.01° and the reflections of CuS belong to the hexagonal phase. The interplanar distance decreased from 0.328 to 0.319 nm that facilitate charge carrier separation and promoting H generation. FTIR data revealed the structural change according to absorption bands of g-CN. ESEM images of S@g-CN exhibited the described layered sheet structure for g-CN materials and CuS@g-CN demonstrated that the sheet materials were fragmented throughout the growth process. The data of BET revealed a higher surface area (55 m/g) for the CuS-g-CN nanosheet. The UV-vis absorption spectrum of S@g-CN showed a strong peak at 322 nm, which weakened after the growth of CuS at g-CN. The PL emission data showed a peak at 441 nm, which correlated with electron-hole pair recombination. The data of hydrogen evolution showed improved performance for the CuS@g-CN catalyst (5227 mL/g·min). Moreover, the activation energy was determined for S@g-CN and CuS@g-CN, which showed a lowering from 47.33 ± 0.02 to 41.15 ± 0.02 KJ/mol.
在本工作中,通过缩聚过程制备了S@g-CN和CuS@g-CN催化剂。采用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和场发射扫描电子显微镜(ESEM)技术对这些样品的结构性质进行了表征。S@g-CN的XRD图谱在27.2°处有一个尖锐峰,在13.01°处有一个弱峰,CuS的衍射峰属于六方相。晶面间距从0.328 nm减小到0.319 nm,这有利于电荷载流子的分离并促进氢气的生成。FTIR数据根据g-CN的吸收带揭示了结构变化。S@g-CN的ESEM图像展示了g-CN材料所描述的层状片状结构,而CuS@g-CN表明片状材料在整个生长过程中发生了碎片化。BET数据显示CuS-g-CN纳米片具有更高的比表面积(55 m²/g)。S@g-CN的紫外可见吸收光谱在322 nm处有一个强峰,在g-CN上生长CuS后该峰减弱。光致发光(PL)发射数据在441 nm处有一个峰,这与电子-空穴对的复合相关。析氢数据表明CuS@g-CN催化剂具有更好的性能(5227 mL/g·min)。此外,还测定了S@g-CN和CuS@g-CN的活化能,结果显示其从47.33±0.02降低至41.15±0.02 kJ/mol。