Suppr超能文献

通过优化电解液提高 Mg(NbAgS)(SO) 电极材料的超级电容器储能性能。

Improving the Energy Storage of Supercapattery Devices through Electrolyte Optimization for Mg(NbAgS)(SO) Electrode Materials.

机构信息

Department of Physics, Riphah International University, Campus Lahore, Lahore 54000, Pakistan.

Department of Chemistry, College of Science, Taif University, Taif P.O. Box 11099, Saudi Arabia.

出版信息

Molecules. 2023 Jun 13;28(12):4737. doi: 10.3390/molecules28124737.

Abstract

Electrolytes are one of the most influential aspects determining the efficiency of electrochemical supercapacitors. Therefore, in this paper, we investigate the effect of introducing co-solvents of ester into ethylene carbonate (EC). The use of ester co-solvents in ethylene carbonate (EC) as an electrolyte for supercapacitors improves conductivity, electrochemical properties, and stability, allowing greater energy storage capacity and increased device durability. We synthesized extremely thin nanosheets of niobium silver sulfide using a hydrothermal process and mixed them with magnesium sulfate in different wt% ratios to produce Mg(NbAgS))(SO). The synergistic effect of MgSO and NbS increased the storage capacity and energy density of the supercapattery. Multivalent ion storage in Mg(NbAgS)(SO) enables the storage of a number of ions. The Mg(NbAgS))(SO) was directly deposited on a nickel foam substrate using a simple and innovative electrodeposition approach. The synthesized silver Mg(NbAgS))(SO) provided a maximum specific capacity of 2087 C/g at 2.0 A/g current density because of its substantial electrochemically active surface area and linked nanosheet channels which aid in ion transportation. The supercapattery was designed with Mg(NbAgS))(SO) and activated carbon (AC) achieved a high energy density of 79 Wh/kg in addition to its high power density of 420 W/kg. The supercapattery (Mg(NbAgS))(SO)//AC) was subjected to 15,000 consecutive cycles. The Coulombic efficiency of the device was 81% after 15,000 consecutive cycles while retaining a 78% capacity retention. This study reveals that the use of this novel electrode material (Mg(NbAgS)(SO)) in ester-based electrolytes has great potential in supercapattery applications.

摘要

电解质是决定电化学超级电容器效率的最具影响力的因素之一。因此,在本文中,我们研究了在碳酸乙烯酯(EC)中引入酯共溶剂对其的影响。在超级电容器的电解质中使用碳酸乙烯酯(EC)的酯共溶剂可以提高导电性、电化学性能和稳定性,从而增加储能能力并提高器件的耐用性。我们使用水热法合成了极其薄的铌银硫化纳米片,并将其与硫酸镁以不同的重量比混合,制得 Mg(NbAgS))(SO)。MgSO 和 NbS 的协同作用提高了超级电容器的储能容量和能量密度。Mg(NbAgS)(SO)中多价离子的存储可以存储多个离子。通过简单创新的电沉积方法,将 Mg(NbAgS))(SO)直接沉积在镍泡沫基底上。所合成的银 Mg(NbAgS))(SO)由于其较大的电化学活性表面积和连接的纳米片通道,有助于离子传输,在 2.0 A/g 电流密度下提供了 2087 C/g 的最大比容量。由于其高能量密度 79 Wh/kg 以及高功率密度 420 W/kg,超级电容器由 Mg(NbAgS))(SO)和活性炭(AC)设计而成。超级电容器(Mg(NbAgS))(SO)//AC)经过 15000 次连续循环。在经过 15000 次连续循环后,该器件的库仑效率为 81%,而容量保持率为 78%。这项研究表明,在酯基电解质中使用这种新型电极材料(Mg(NbAgS)(SO))在超级电容器应用中具有很大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4705/10305711/80c017f9b45b/molecules-28-04737-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验