文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用靶向配体功能化的合成抗原受体间充质干细胞增强化疗药物的抗癌疗效

Enhancing Anticancer Efficacy of Chemotherapeutics Using Targeting Ligand-Functionalized Synthetic Antigen Receptor-Mesenchymal Stem Cells.

作者信息

Nethi Susheel Kumar, Li Xiaolei, Bhatnagar Shubhmita, Prabha Swayam

机构信息

Fels Cancer Institute for Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.

School of Pharmacy, Temple University, Philadelphia, PA 19140, USA.

出版信息

Pharmaceutics. 2023 Jun 15;15(6):1742. doi: 10.3390/pharmaceutics15061742.


DOI:10.3390/pharmaceutics15061742
PMID:37376189
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10304812/
Abstract

Mesenchymal stem cells (MSCs) have been studied for their potential in facilitating tumor-targeted delivery of chemotherapeutics due to their tumor-homing characteristics. We hypothesized that targeting effectiveness of MSCs can be further enhanced by incorporating tumor-targeting ligands on MSC surfaces that will allow for enhanced arrest and binding within the tumor tissue. We utilized a unique strategy of modifying MSCs with synthetic antigen receptors (SARs), targeting specific antigens overexpressed on cancer cells. MSCs were surface-functionalized by first incorporating recombinant protein G (PG) on the surface, followed by binding of the targeting antibody to the PG handle. We functionalized MSCs with antibodies targeting a tyrosine kinase transmembrane receptor protein, epidermal growth factor receptor (EGFR), overexpressed in non-small-cell lung cancer (NSCLC). The efficacy of MSCs functionalized with anti-EGFR antibodies (cetuximab and D8) was determined in murine models of NSCLC. Cetuximab-functionalized MSCs demonstrated improved binding to EGFR protein and to EGFR overexpressing A549 lung adenocarcinoma cells. Further, cetuximab-functionalized MSCs loaded with paclitaxel nanoparticles were efficient in slowing orthotopic A549 tumor growth and improving the overall survival relative to that of other controls. Biodistribution studies revealed a six-fold higher retention of EGFR-targeted MSCs than non-targeted MSCs. Based on these results, we conclude that targeting ligand functionalization could be used to enhance the concentration of therapeutic MSC constructs at the tumor tissue and to achieve improved antitumor response.

摘要

间充质干细胞(MSCs)因其肿瘤归巢特性,在促进化疗药物的肿瘤靶向递送方面的潜力已得到研究。我们假设,通过在MSC表面掺入肿瘤靶向配体,可以进一步提高MSCs的靶向有效性,这将增强其在肿瘤组织内的滞留和结合。我们采用了一种独特的策略,用合成抗原受体(SARs)修饰MSCs,靶向癌细胞上过度表达的特定抗原。首先在表面掺入重组蛋白G(PG),然后将靶向抗体与PG连接,从而使MSCs表面功能化。我们用靶向一种酪氨酸激酶跨膜受体蛋白——表皮生长因子受体(EGFR)的抗体对MSCs进行功能化,EGFR在非小细胞肺癌(NSCLC)中过度表达。在NSCLC小鼠模型中测定了用抗EGFR抗体(西妥昔单抗和D8)功能化的MSCs的疗效。西妥昔单抗功能化的MSCs显示出与EGFR蛋白以及与过度表达EGFR的A549肺腺癌细胞的结合有所改善。此外,负载紫杉醇纳米颗粒的西妥昔单抗功能化的MSCs在减缓原位A549肿瘤生长和提高总体生存率方面比其他对照组更有效。生物分布研究表明,EGFR靶向的MSCs的滞留量是非靶向MSCs的六倍。基于这些结果,我们得出结论,靶向配体功能化可用于提高治疗性MSC构建体在肿瘤组织中的浓度,并实现更好的抗肿瘤反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a7/10304812/1f855b6cfd59/pharmaceutics-15-01742-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a7/10304812/42f257219ef3/pharmaceutics-15-01742-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a7/10304812/2924f0ad6d7e/pharmaceutics-15-01742-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a7/10304812/cb0838caea81/pharmaceutics-15-01742-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a7/10304812/0f9e8c234a1c/pharmaceutics-15-01742-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a7/10304812/c8f89b90f951/pharmaceutics-15-01742-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a7/10304812/4676241064ea/pharmaceutics-15-01742-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a7/10304812/c193f0befc29/pharmaceutics-15-01742-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a7/10304812/1f855b6cfd59/pharmaceutics-15-01742-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a7/10304812/42f257219ef3/pharmaceutics-15-01742-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a7/10304812/2924f0ad6d7e/pharmaceutics-15-01742-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a7/10304812/cb0838caea81/pharmaceutics-15-01742-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a7/10304812/0f9e8c234a1c/pharmaceutics-15-01742-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a7/10304812/c8f89b90f951/pharmaceutics-15-01742-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a7/10304812/4676241064ea/pharmaceutics-15-01742-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a7/10304812/c193f0befc29/pharmaceutics-15-01742-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a7/10304812/1f855b6cfd59/pharmaceutics-15-01742-g008.jpg

相似文献

[1]
Enhancing Anticancer Efficacy of Chemotherapeutics Using Targeting Ligand-Functionalized Synthetic Antigen Receptor-Mesenchymal Stem Cells.

Pharmaceutics. 2023-6-15

[2]
Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting.

Mol Cancer Ther. 2018-3-28

[3]
Mesenchymal Stem Cells As Guideposts for Nanoparticle-Mediated Targeted Drug Delivery in Ovarian Cancer.

Cancers (Basel). 2020-4-14

[4]
Improving Payload Capacity and Anti-Tumor Efficacy of Mesenchymal Stem Cells Using TAT Peptide Functionalized Polymeric Nanoparticles.

Cancers (Basel). 2019-4-6

[5]
Mesenchymal stem cell-delivered paclitaxel nanoparticles exhibit enhanced efficacy against a syngeneic orthotopic mouse model of pancreatic cancer.

Int J Pharm. 2024-12-5

[6]
Antibody conjugated PLGA nanoparticles for targeted delivery of paclitaxel palmitate: efficacy and biofate in a lung cancer mouse model.

Small. 2013-7-21

[7]
Nano-engineered mesenchymal stem cells as targeted therapeutic carriers.

J Control Release. 2014-10-23

[8]
Mesenchymal stem cells loaded with paclitaxel-poly(lactic--glycolic acid) nanoparticles for glioma-targeting therapy.

Int J Nanomedicine. 2018-9-7

[9]
Afatinib-loaded immunoliposomes functionalized with cetuximab: A novel strategy targeting the epidermal growth factor receptor for treatment of non-small-cell lung cancer.

Int J Pharm. 2019-2-8

[10]
Strategy to enhance lung cancer treatment by five essential elements: inhalation delivery, nanotechnology, tumor-receptor targeting, chemo- and gene therapy.

Theranostics. 2019-10-22

引用本文的文献

[1]
and therapeutic evaluation of bone marrow-derived mesenchymal stem cells in liver cancer treatment.

Front Cell Dev Biol. 2025-5-8

[2]
Computational Investigation of Montelukast and Its Structural Derivatives for Binding Affinity to Dopaminergic and Serotonergic Receptors: Insights from a Comprehensive Molecular Simulation.

Pharmaceuticals (Basel). 2025-4-10

[3]
Cell-free regenerative medicine: identifying the best source of mesenchymal stem cells for skin therapy in Systemic Sclerosis.

Front Cell Dev Biol. 2025-2-19

[4]
Recent advances in mesenchymal stem cell therapy for multiple sclerosis: clinical applications and challenges.

Front Cell Dev Biol. 2025-2-3

[5]
Enhancing precision in cancer treatment: the role of gene therapy and immune modulation in oncology.

Front Med (Lausanne). 2025-1-13

[6]
Differentiation of mesenchymal stem cells towards lens epithelial stem cells based on three-dimensional bio-printed matrix.

Front Cell Dev Biol. 2025-1-6

[7]
Applications of artificial intelligence in regenerative dentistry: promoting stem cell therapy and the scaffold development.

Front Cell Dev Biol. 2024-12-6

[8]
Combining the induced pluripotent stem cell (iPSC) technology with chimeric antigen receptor (CAR)-based immunotherapy: recent advances, challenges, and future prospects.

Front Cell Dev Biol. 2024-11-18

[9]
Mesenchymal stem cell-delivered paclitaxel nanoparticles exhibit enhanced efficacy against a syngeneic orthotopic mouse model of pancreatic cancer.

Int J Pharm. 2024-12-5

[10]
Stem cell technology for antitumor drug loading and delivery in oncology.

Oncol Res. 2024

本文引用的文献

[1]
Incorporation of paclitaxel in mesenchymal stem cells using nanoengineering upregulates antioxidant response, CXCR4 expression and enhances tumor homing.

Mater Today Bio. 2023-1-30

[2]
Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer.

Cell Death Dis. 2021-11-13

[3]
IL-1β-primed mesenchymal stromal cells exert enhanced therapeutic effects to alleviate Chronic Prostatitis/Chronic Pelvic Pain Syndrome through systemic immunity.

Stem Cell Res Ther. 2021-9-25

[4]
Mesenchymal Stem/Stromal Cells as a Vehicle for Cytokine Delivery: An Emerging Approach for Tumor Immunotherapy.

Front Med (Lausanne). 2021-8-27

[5]
Pharmacokinetic-Pharmacodynamic Modeling of Tumor Targeted Drug Delivery Using Nano-Engineered Mesenchymal Stem Cells.

Pharmaceutics. 2021-1-12

[6]
Mesenchymal Stem Cells As Guideposts for Nanoparticle-Mediated Targeted Drug Delivery in Ovarian Cancer.

Cancers (Basel). 2020-4-14

[7]
Engineered Mesenchymal Stem Cells for Targeting Solid Tumors: Therapeutic Potential beyond Regenerative Therapy.

J Pharmacol Exp Ther. 2019-6-7

[8]
Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement.

iScience. 2019-5-31

[9]
Improving Payload Capacity and Anti-Tumor Efficacy of Mesenchymal Stem Cells Using TAT Peptide Functionalized Polymeric Nanoparticles.

Cancers (Basel). 2019-4-6

[10]
Mesenchymal stem cells loaded with paclitaxel-poly(lactic--glycolic acid) nanoparticles for glioma-targeting therapy.

Int J Nanomedicine. 2018-9-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索