Department of Pharmacology & Therapeutics, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain.
Laboratory for Integrative Genomics, Department of Integrative Biology, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, 632014, India.
Biomark Med. 2023 Apr;17(7):369-378. doi: 10.2217/bmm-2023-0051. Epub 2023 Jun 29.
To evaluate machine learning algorithms (MLAs) for predicting factors (oxidative stress biomarkers [OSBs] and single-nucleotide polymorphism of the antioxidant enzymes) for respiratory distress syndrome (RDS) and significant alterations in the liver functions (SALVs). MLAs were applied for predicting the RDS and SALV (with OSB and single-nucleotide polymorphisms in the antioxidant enzymes) with area under the curve (AUC) as the accuracy measure. The C5.0 algorithm best predicted SALV (AUC: 0.63) with catalase as the most important predictor. Bayesian network best predicted RDS (AUC: 0.6) and was the most important predictor. MLAs carry great potential in identifying the potential genetic and OSBs in neonatal RDS and SALV. Validation in prospective studies is needed urgently.
评估用于预测呼吸窘迫综合征(RDS)和肝功能显著改变(SALVs)的因素(氧化应激生物标志物 [OSBs] 和抗氧化酶的单核苷酸多态性)的机器学习算法(MLAs)。 应用 MLAs 以 AUC 作为准确性衡量标准,预测 RDS 和 SALV(具有抗氧化酶中的 OSB 和单核苷酸多态性)。C5.0 算法最佳预测 SALV(AUC:0.63),其中过氧化氢酶是最重要的预测指标。贝叶斯网络最佳预测 RDS(AUC:0.6),是最重要的预测指标。MLAs 在识别新生儿 RDS 和 SALV 的潜在遗传和 OSB 方面具有巨大潜力。迫切需要前瞻性研究进行验证。