Suppr超能文献

生物标志物和机器学习在预测早产儿支气管肺发育不良和新生儿呼吸窘迫综合征方面的进展。

Advancements in biomarkers and machine learning for predicting of bronchopulmonary dysplasia and neonatal respiratory distress syndrome in preterm infants.

作者信息

Talebi Hanieh, Dastgheib Seyed Alireza, Vafapour Maryam, Bahrami Reza, Golshan-Tafti Mohammad, Danaei Mahsa, Azizi Sepideh, Shahbazi Amirhossein, Pourkazemi Melina, Yeganegi Maryam, Shiri Amirmasoud, Masoudi Ali, Rashnavadi Heewa, Neamatzadeh Hossein

机构信息

Clinical Research Development Unit, Fatemieh Hospital, Hamadan University of Medical Sciences, Hamadan, Iran.

Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

出版信息

Front Pediatr. 2025 Apr 25;13:1521668. doi: 10.3389/fped.2025.1521668. eCollection 2025.

Abstract

Recent advancements in biomarker identification and machine learning have significantly enhanced the prediction and diagnosis of Bronchopulmonary Dysplasia (BPD) and neonatal respiratory distress syndrome (nRDS) in preterm infants. Key predictors of BPD severity include elevated cytokines like Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-α), as well as inflammatory markers such as the Neutrophil-to-Lymphocyte Ratio (NLR) and soluble gp130. Research into endoplasmic reticulum stress-related genes, differentially expressed genes, and ferroptosis-related genes provides valuable insights into BPD's pathophysiology. Machine learning models like XGBoost and Random Forest have identified important biomarkers, including CYYR1, GALNT14, and OLAH, improving diagnostic accuracy. Additionally, a five-gene transcriptomic signature shows promise for early identification of at-risk neonates, underscoring the significance of immune response factors in BPD. For nRDS, biomarkers such as the lecithin/sphingomyelin (L/S) ratio and oxidative stress indicators have been effectively used in innovative diagnostic methods, including attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and high-content screening for ABCA3 modulation. Machine learning algorithms like Partial Least Squares Regression (PLSR) and C5.0 have shown potential in accurately identifying critical health indicators. Furthermore, advanced feature extraction methods for analyzing neonatal cry signals offer a non-invasive means to differentiate between conditions like sepsis and nRDS. Overall, these findings emphasize the importance of combining biomarker analysis with advanced computational techniques to improve clinical decision-making and intervention strategies for managing BPD and nRDS in vulnerable preterm infants.

摘要

生物标志物识别和机器学习方面的最新进展显著提高了对早产儿支气管肺发育不良(BPD)和新生儿呼吸窘迫综合征(nRDS)的预测和诊断能力。BPD严重程度的关键预测指标包括白细胞介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)等细胞因子升高,以及中性粒细胞与淋巴细胞比值(NLR)和可溶性gp130等炎症标志物。对内质网应激相关基因、差异表达基因和铁死亡相关基因的研究为BPD的病理生理学提供了有价值的见解。XGBoost和随机森林等机器学习模型已经识别出重要的生物标志物,包括CYYR1、GALNT14和OLAH,提高了诊断准确性。此外,一个五基因转录组特征显示出早期识别高危新生儿的潜力,强调了免疫反应因子在BPD中的重要性。对于nRDS,卵磷脂/鞘磷脂(L/S)比值和氧化应激指标等生物标志物已有效地应用于创新诊断方法,包括衰减全反射傅里叶变换红外光谱(ATR-FTIR)和ABCA3调节的高内涵筛选。偏最小二乘回归(PLSR)和C5.0等机器学习算法在准确识别关键健康指标方面显示出潜力。此外,用于分析新生儿哭声信号的先进特征提取方法提供了一种非侵入性手段,用于区分败血症和nRDS等病症。总体而言,这些发现强调了将生物标志物分析与先进计算技术相结合对于改善临床决策和管理脆弱早产儿BPD和nRDS的干预策略的重要性。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验