Suppr超能文献

TG-CDDPM:基于条件去噪扩散概率模型的文本引导抗菌肽生成

TG-CDDPM: text-guided antimicrobial peptides generation based on conditional denoising diffusion probabilistic model.

作者信息

Cao Junhang, Zhang Jun, Yu Qiyuan, Ji Junkai, Li Jianqiang, He Shan, Zhu Zexuan

机构信息

College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China.

National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen 518060, China.

出版信息

Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae644.

Abstract

Antimicrobial peptides (AMPs) have emerged as a promising substitution to antibiotics thanks to their boarder range of activities, less likelihood of drug resistance, and low toxicity. Traditional biochemical methods for AMP discovery are costly and inefficient. Deep generative models, including the long-short term memory model, variational autoencoder model, and generative adversarial model, have been widely introduced to expedite AMP discovery. However, these models tend to suffer from the lack of diversity in generating AMPs. The denoising diffusion probabilistic model serves as a good candidate for solving this issue. We proposed a three-stage Text-Guided Conditional Denoising Diffusion Probabilistic Model (TG-CDDPM) to generate novel and homologous AMPs. In the first two stages, contrastive learning and inferring models are crafted to create better conditions for guiding AMP generation, respectively. In the last stage, a pre-trained conditional denoising diffusion probabilistic model is leveraged to enrich the peptide knowledge and fine-tuned to learn feature representation in downstream. TG-CDDPM was compared to the state-of-the-art generative models for AMP generation, and it demonstrated competitive or better performance with the assistance of text description as supervised information. The membrane penetration capabilities of the identified candidate AMPs by TG-CDDPM were also validated through molecular weight dynamics experiments.

摘要

抗菌肽(AMPs)因其广泛的活性范围、较低的耐药可能性和低毒性,已成为抗生素的一种有前景的替代品。传统的用于发现抗菌肽的生化方法成本高且效率低。深度生成模型,包括长短期记忆模型、变分自编码器模型和生成对抗模型,已被广泛引入以加速抗菌肽的发现。然而,这些模型在生成抗菌肽时往往缺乏多样性。去噪扩散概率模型是解决这个问题的一个很好的候选方法。我们提出了一种三阶段文本引导条件去噪扩散概率模型(TG-CDDPM)来生成新的和同源的抗菌肽。在前两个阶段,分别精心设计对比学习和推理模型,为引导抗菌肽的生成创造更好的条件。在最后一个阶段,利用预训练的条件去噪扩散概率模型来丰富肽知识,并在下游进行微调以学习特征表示。将TG-CDDPM与用于生成抗菌肽的最先进生成模型进行了比较,在文本描述作为监督信息的辅助下,它表现出了有竞争力或更好的性能。通过分子量动力学实验也验证了TG-CDDPM鉴定出的候选抗菌肽的膜穿透能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/703e/11637771/bb983e5dd4ee/bbae644f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验