Muguet Ines, Maziz Ali, Mathieu Fabrice, Mazenq Laurent, Larrieu Guilhem
LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue du colonel Roche, Toulouse, F-31400, France.
Adv Mater. 2023 Sep;35(39):e2302472. doi: 10.1002/adma.202302472. Epub 2023 Jul 23.
This study presents a novel approach to improve the performance of microelectrode arrays (MEAs) used for electrophysiological studies of neuronal networks. The integration of 3D nanowires (NWs) with MEAs increases the surface-to-volume ratio, which enables subcellular interactions and high-resolution neuronal signal recording. However, these devices suffer from high initial interface impedance and limited charge transfer capacity due to their small effective area. To overcome these limitations, the integration of conductive polymer coatings, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is investigated as a mean of improving the charge transfer capacity and biocompatibility of MEAs. The study combines platinum silicide-based metallic 3D nanowires electrodes with electrodeposited PEDOT:PSS coatings to deposit ultra-thin (<50 nm) layers of conductive polymer onto metallic electrodes with very high selectivity. The polymer-coated electrodes were fully characterized electrochemically and morphologically to establish a direct relationship between synthesis conditions, morphology, and conductive features. Results show that PEDOT-coated electrodes exhibit thickness-dependent improved stimulation and recording performances, offering new perspectives for neuronal interfacing with optimal cell engulfment to enable the study of neuronal activity with acute spatial and signal resolution at the sub-cellular level.
本研究提出了一种新方法,以提高用于神经网络电生理研究的微电极阵列(MEA)的性能。将三维纳米线(NW)与MEA集成可提高表面积与体积比,从而实现亚细胞相互作用和高分辨率神经元信号记录。然而,由于其有效面积小,这些器件存在高初始界面阻抗和有限的电荷转移能力的问题。为克服这些限制,研究了导电聚合物涂层聚(3,4 - 乙撑二氧噻吩)-聚(苯乙烯磺酸盐)(PEDOT:PSS)的集成,作为提高MEA电荷转移能力和生物相容性的一种手段。该研究将基于硅化铂的金属三维纳米线电极与电沉积的PEDOT:PSS涂层相结合,以非常高的选择性在金属电极上沉积超薄(<50 nm)的导电聚合物层。对聚合物涂层电极进行了全面的电化学和形态学表征,以建立合成条件、形态和导电特性之间的直接关系。结果表明,PEDOT涂层电极表现出厚度依赖性的改善的刺激和记录性能,为神经元接口提供了新的视角,具有最佳的细胞吞噬能力,能够在亚细胞水平上以急性空间和信号分辨率研究神经元活动。