Suppr超能文献

使用数据驱动和临床分诊系统对复杂多病种人群未满足需求进行的全科医生评估:一项前瞻性队列研究

GP assessment of unmet need in a complex multimorbid population using a data-driven and clinical triage system: a prospective cohort study.

作者信息

Parry Emma, Ahmed Kamran, Evans Simon, Guest Elizabeth, Klaire Vijay, Koodaruth Abdool, Labutale Prasadika, Matthews Dawn, Lampitt Jonathan, Pickavance Gillian, Sidhu Mona, Warren Kate, Singh Baldev

机构信息

School of Medicine, Keele University, Staffordshire, UK

New Cross Hospital, The Royal Wolverhampton NHS Trust, Wolverhampton, UK.

出版信息

BJGP Open. 2023 Dec 19;7(4). doi: 10.3399/BJGPO.2023.0078. Print 2023 Dec.

Abstract

BACKGROUND

Patients with unmet healthcare needs are more likely to access unscheduled care. Identifying these patients through data-driven and clinical risk stratification for active case management in primary care can help address patient need and reduce demand on acute services.

AIM

To determine how a proactive digital healthcare system can be used to undertake comprehensive needs analysis of patients at risk of unplanned admission and mortality.

DESIGN & SETTING: Prospective cohort study of six general practices in a deprived UK city.

METHOD

To identify those with unmet needs, the study's population underwent digitally-driven risk stratification into Escalated and Non-escalated groups using seven risk factors. The Escalated group underwent further stratification using GP clinical assessment into Concern and No concern groups. The Concern group underwent Unmet Needs Analysis (UNA).

RESULTS

From 24 746 patients, 516 (2.1%) were triaged into the Concern group and 164 (0.7%) underwent UNA. These patients were more likely to be older ( = 4.69, <0.001), female (X = 4.46, <0.05), have a Patients At Risk of Re-hospitalisation (PARR) score ≥80 (X = 4.31, <0.05), be a nursing home resident (X = 6.75, <0.01), or on an end-of-life (EOL) register (X = 14.55, <0.001). Following UNA, 143 (87.2%) patients had further review planned or were referred for further input. The majority of patients had four domains of need. In those who GPs would not be surprised if they died within the next few months, = 69 (42.1%) were not on an EOL register.

CONCLUSION

This study showed how an integrated, patient-centred, digital care system working with GPs can highlight and implement resources to address the escalating care needs of complex individuals.

摘要

背景

医疗需求未得到满足的患者更有可能寻求非预约护理。通过数据驱动和临床风险分层来识别这些患者,以便在初级保健中进行主动病例管理,有助于满足患者需求并减少对急性服务的需求。

目的

确定如何利用主动式数字医疗系统对有计划外入院和死亡风险的患者进行全面需求分析。

设计与设置

对英国一个贫困城市的六个全科诊所进行前瞻性队列研究。

方法

为了识别那些需求未得到满足的患者,研究人群使用七个风险因素通过数字驱动的风险分层分为升级组和未升级组。升级组通过全科医生临床评估进一步分层为关注组和非关注组。关注组进行了未满足需求分析(UNA)。

结果

在24746名患者中,516名(2.1%)被分诊到关注组,164名(0.7%)接受了UNA。这些患者更有可能年龄较大(t = 4.69,P < 0.001)、为女性(χ² = 4.46,P < 0.05)、再入院风险患者(PARR)评分≥80(χ² = 4.31,P < 0.05)、是养老院居民(χ² = 6.75,P < 0.01)或在临终关怀(EOL)登记册上(χ² = 14.55,P < 0.001)。在UNA之后,143名(87.2%)患者计划进行进一步复查或被转介以获得进一步的帮助。大多数患者有四个需求领域。在那些全科医生认为如果他们在接下来几个月内死亡不会感到惊讶的患者中,69名(42.1%)不在EOL登记册上。

结论

本研究表明,一个与全科医生合作的综合、以患者为中心的数字护理系统如何能够突出并实施资源,以满足复杂个体不断升级的护理需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3a/11176674/39fb6afe357a/bjgpopen-7-0078-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验