Suppr超能文献

应用可解释的机器学习框架研究新冠疫情恢复期的出行不平等问题。

Applying an interpretable machine learning framework to study mobility inequity in the recovery phase of COVID-19 pandemic.

作者信息

Li Zihao, Wei Zihang, Zhang Yunlong, Kong Xiaoqiang, Ma Chaolun

机构信息

Zachry Department of Civil & Environmental Engineering, Texas A&M University, 3136 TAMU College Station, TX, USA.

出版信息

Travel Behav Soc. 2023 Oct;33:100621. doi: 10.1016/j.tbs.2023.100621. Epub 2023 Jun 26.

Abstract

The COVID-19 pandemic is a public health crisis that also fuels the pervasive social inequity in the United States. Existing studies have extensively analyzed the inequity issues on mobility across different demographic groups during the lockdown phase. However, it is unclear whether the mobility inequity is perennial and will continue into the mobility recovery phase. This study utilizes ride-hailing data from Jan 1st, 2019, to Mar 31st, 2022, in Chicago to analyze the impact of various factors, such as demographic, land use, and transit connectivity, on mobility inequity in the different recovery phases. Instead of commonly used statistical methods, this study leverages advanced time-series clustering and an interpretable machine learning algorithm. The result demonstrates that inequity still exists in the mobility recovery phase of the COVID-19 pandemic, and the degree of mobility inequity in different recovery phases is varied. Furthermore, mobility inequity is more likely to exist in the census tract with more families without children, lower health insurance coverage, inflexible workstyle, more African Americans, higher poverty rate, fewer commercial land use, and higher Gini index. This study aims to further the understanding of the social inequity issue during the mobility recovery phase of the COVID-19 pandemic and help governments propose proper policies to tackle the unequal impact of the pandemic.

摘要

新冠疫情是一场公共卫生危机,它也加剧了美国普遍存在的社会不平等现象。现有研究广泛分析了封锁阶段不同人口群体在出行方面的不平等问题。然而,出行不平等是否长期存在并会持续到出行恢复阶段尚不清楚。本研究利用2019年1月1日至2022年3月31日芝加哥的网约车数据,分析人口、土地利用和公共交通连通性等各种因素对不同恢复阶段出行不平等的影响。本研究未采用常用的统计方法,而是利用了先进的时间序列聚类和可解释的机器学习算法。结果表明,在新冠疫情的出行恢复阶段不平等现象仍然存在,且不同恢复阶段的出行不平等程度各不相同。此外,在没有孩子的家庭较多、医疗保险覆盖率较低、工作方式不灵活、非裔美国人较多、贫困率较高、商业用地较少且基尼系数较高的普查区,出行不平等更有可能存在。本研究旨在进一步了解新冠疫情出行恢复阶段的社会不平等问题,并帮助政府提出适当政策,以应对疫情的不平等影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c2d/10291880/3f65cf620f91/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验