Department of Clinical Medicine, Aalborg University Hospital, Aalborg, Denmark.
Nordsim-Centre for Skills Training and Simulation, Aalborg, Denmark.
Surg Endosc. 2023 Aug;37(8):6588-6601. doi: 10.1007/s00464-023-10214-7. Epub 2023 Jun 30.
The increasing use of robot-assisted surgery (RAS) has led to the need for new methods of assessing whether new surgeons are qualified to perform RAS, without the resource-demanding process of having expert surgeons do the assessment. Computer-based automation and artificial intelligence (AI) are seen as promising alternatives to expert-based surgical assessment. However, no standard protocols or methods for preparing data and implementing AI are available for clinicians. This may be among the reasons for the impediment to the use of AI in the clinical setting.
We tested our method on porcine models with both the da Vinci Si and the da Vinci Xi. We sought to capture raw video data from the surgical robots and 3D movement data from the surgeons and prepared the data for the use in AI by a structured guide to acquire and prepare video data using the following steps: 'Capturing image data from the surgical robot', 'Extracting event data', 'Capturing movement data of the surgeon', 'Annotation of image data'.
15 participant (11 novices and 4 experienced) performed 10 different intraabdominal RAS procedures. Using this method we captured 188 videos (94 from the surgical robot, and 94 corresponding movement videos of the surgeons' arms and hands). Event data, movement data, and labels were extracted from the raw material and prepared for use in AI.
With our described methods, we could collect, prepare, and annotate images, events, and motion data from surgical robotic systems in preparation for its use in AI.
机器人辅助手术(RAS)的使用日益增加,这就需要新的方法来评估新外科医生是否有资格进行 RAS 手术,而无需专家外科医生进行评估这种资源密集型过程。基于计算机的自动化和人工智能(AI)被视为专家外科评估的有前途的替代方法。然而,临床医生没有用于准备数据和实施 AI 的标准协议或方法。这可能是阻碍 AI 在临床环境中使用的原因之一。
我们在具有达芬奇 Si 和达芬奇 Xi 的猪模型上测试了我们的方法。我们试图从手术机器人捕获原始视频数据,并从外科医生捕获 3D 运动数据,并通过结构化指南准备数据以供 AI 使用,该指南使用以下步骤获取和准备视频数据:“从手术机器人捕获图像数据”、“提取事件数据”、“捕获外科医生运动数据”、“图像数据注释”。
15 名参与者(11 名新手和 4 名经验丰富的外科医生)进行了 10 种不同的腹腔内 RAS 手术。使用这种方法,我们捕获了 188 个视频(94 个来自手术机器人,94 个对应外科医生手臂和手的运动视频)。从原始材料中提取了事件数据、运动数据和标签,并准备好用于 AI。
通过我们描述的方法,我们可以收集、准备和注释来自手术机器人系统的图像、事件和运动数据,为其在 AI 中的使用做准备。