Fard Mahtab J, Ameri Sattar, Darin Ellis R, Chinnam Ratna B, Pandya Abhilash K, Klein Michael D
Department of Industrial and Systems Engineering, Wayne State University, Detroit, Michigan, USA.
Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan, USA.
Int J Med Robot. 2018 Feb;14(1). doi: 10.1002/rcs.1850. Epub 2017 Jun 29.
Surgical skill assessment has predominantly been a subjective task. Recently, technological advances such as robot-assisted surgery have created great opportunities for objective surgical evaluation. In this paper, we introduce a predictive framework for objective skill assessment based on movement trajectory data. Our aim is to build a classification framework to automatically evaluate the performance of surgeons with different levels of expertise.
Eight global movement features are extracted from movement trajectory data captured by a da Vinci robot for surgeons with two levels of expertise - novice and expert. Three classification methods - k-nearest neighbours, logistic regression and support vector machines - are applied.
The result shows that the proposed framework can classify surgeons' expertise as novice or expert with an accuracy of 82.3% for knot tying and 89.9% for a suturing task.
This study demonstrates and evaluates the ability of machine learning methods to automatically classify expert and novice surgeons using global movement features.
手术技能评估一直主要是一项主观任务。最近,诸如机器人辅助手术等技术进步为客观的手术评估创造了巨大机会。在本文中,我们介绍了一种基于运动轨迹数据的客观技能评估预测框架。我们的目标是构建一个分类框架,以自动评估不同专业水平外科医生的表现。
从达芬奇机器人捕获的运动轨迹数据中提取八个全局运动特征,用于具有两种专业水平(新手和专家)的外科医生。应用了三种分类方法——k近邻、逻辑回归和支持向量机。
结果表明,所提出的框架能够将外科医生的专业水平分类为新手或专家,打结任务的准确率为82.3%,缝合任务的准确率为89.9%。
本研究展示并评估了机器学习方法使用全局运动特征自动区分专家和新手外科医生的能力。