Hashemi Nasseh, Mose Matias, Østergaard Lasse R, Bjerrum Flemming, Hashemi Mostaan, Svendsen Morten B S, Friis Mikkel L, Tolsgaard Martin G, Rasmussen Sten
Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
Nordsim - Centre for Skills Training and Simulation, Aalborg University Hospital, Aalborg, Denmark.
Surg Endosc. 2025 Mar;39(3):1709-1719. doi: 10.1007/s00464-024-11486-3. Epub 2025 Jan 13.
This study aimed to develop an automated skills assessment tool for surgical trainees using deep learning.
Optimal surgical performance in robot-assisted surgery (RAS) is essential for ensuring good surgical outcomes. This requires effective training of new surgeons, which currently relies on supervision and skill assessment by experienced surgeons. Artificial Intelligence (AI) presents an opportunity to augment existing human-based assessments.
We used a network architecture consisting of a convolutional neural network combined with a long short-term memory (LSTM) layer to create two networks for the extraction and analysis of spatial and temporal features from video recordings of surgical procedures, facilitating action recognition and skill assessment.
21 participants (16 novices and 5 experienced) performed 16 different intra-abdominal robot-assisted surgical procedures on porcine models. The action recognition network achieved an accuracy of 96.0% in identifying surgical actions. A GradCAM filter was used to enhance the model interpretability. The skill assessment network had an accuracy of 81.3% in classifying novices and experiences. Procedure plots were created to visualize the skill assessment.
Our study demonstrated that AI can be used to automate surgical action recognition and skill assessment. The use of a porcine model enables effective data collection at different levels of surgical performance, which is normally not available in the clinical setting. Future studies need to test how well AI developed within a porcine setting can be used to detect errors and provide feedback and actionable skills assessment in the clinical setting.
本研究旨在开发一种使用深度学习的外科住院医师技能自动评估工具。
机器人辅助手术(RAS)中的最佳手术表现对于确保良好的手术结果至关重要。这需要对新外科医生进行有效的培训,目前这依赖于经验丰富的外科医生的监督和技能评估。人工智能(AI)为增强现有的基于人工的评估提供了机会。
我们使用了一种由卷积神经网络与长短期记忆(LSTM)层相结合的网络架构,创建了两个网络,用于从手术过程的视频记录中提取和分析空间和时间特征,以促进动作识别和技能评估。
21名参与者(16名新手和5名经验丰富者)在猪模型上进行了16种不同的腹腔内机器人辅助手术。动作识别网络在识别手术动作方面的准确率达到了96.0%。使用GradCAM滤波器来增强模型的可解释性。技能评估网络在区分新手和有经验者方面的准确率为81.3%。创建了手术过程图以可视化技能评估。
我们的研究表明,AI可用于实现手术动作识别和技能评估的自动化。使用猪模型能够在不同手术表现水平上有效收集数据,而这些数据在临床环境中通常是无法获得的。未来的研究需要测试在猪模型环境中开发的AI在临床环境中用于检测错误、提供反馈和可行的技能评估的效果如何。