区分网络上的简单和复杂传染过程。

Distinguishing Simple and Complex Contagion Processes on Networks.

机构信息

Fondazione Bruno Kessler, Trento, Italy.

Aix-Marseille Univ, Université de Toulon, CNRS, Centre de Physique Théorique, Turing Center for Living Systems, Marseille, France.

出版信息

Phys Rev Lett. 2023 Jun 16;130(24):247401. doi: 10.1103/PhysRevLett.130.247401.

Abstract

Contagion processes on networks, including disease spreading, information diffusion, or social behaviors propagation, can be modeled as simple contagion, i.e., as a contagion process involving one connection at a time, or as complex contagion, in which multiple interactions are needed for a contagion event. Empirical data on spreading processes, however, even when available, do not easily allow us to uncover which of these underlying contagion mechanisms is at work. We propose a strategy to discriminate between these mechanisms upon the observation of a single instance of a spreading process. The strategy is based on the observation of the order in which network nodes are infected, and on its correlations with their local topology: these correlations differ between processes of simple contagion, processes involving threshold mechanisms, and processes driven by group interactions (i.e., by "higher-order" mechanisms). Our results improve our understanding of contagion processes and provide a method using only limited information to distinguish between several possible contagion mechanisms.

摘要

网络上的传染过程,包括疾病传播、信息扩散或社会行为传播,可以被建模为简单传染,即每次涉及一个连接的传染过程,或者是复杂传染,即需要多次交互才能发生传染事件。然而,即使有传播过程的经验数据,也不容易让我们发现哪种潜在的传染机制在起作用。我们提出了一种策略,以便在观察到单个传播过程时,区分这些机制。该策略基于观察网络节点被感染的顺序,以及与它们局部拓扑结构的相关性:这些相关性在简单传染过程、涉及阈值机制的过程和由群体相互作用驱动的过程(即“高阶”机制)之间有所不同。我们的研究结果增进了对传染过程的理解,并提供了一种仅使用有限信息就可以区分几种可能的传染机制的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索