Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
J Biol Chem. 2023 Aug;299(8):104983. doi: 10.1016/j.jbc.2023.104983. Epub 2023 Jun 28.
The functional association between stimulation of G-protein-coupled receptors (GPCRs) by eicosanoids and actin cytoskeleton reorganization remains largely unexplored. Using a model of human adrenocortical cancer cells, here we established that activation of the GPCR OXER1 by its natural agonist, the eicosanoid 5-oxo-eicosatetraenoic acid, leads to the formation of filopodia-like elongated projections connecting adjacent cells, known as tunneling nanotube (TNT)-like structures. This effect is reduced by pertussis toxin and GUE1654, a biased antagonist for the Gβγ pathway downstream of OXER1 activation. We also observed pertussis toxin-dependent TNT biogenesis in response to lysophosphatidic acid, indicative of a general response driven by Gi/o-coupled GPCRs. TNT generation by either 5-oxo-eicosatetraenoic acid or lysophosphatidic acid is partially dependent on the transactivation of the epidermal growth factor receptor and impaired by phosphoinositide 3-kinase inhibition. Subsequent signaling analysis reveals a strict requirement of phospholipase C β3 and its downstream effector protein kinase Cα. Consistent with the established role of Rho small GTPases in the formation of actin-rich projecting structures, we identified the phosphoinositide 3-kinase-regulated guanine nucleotide exchange factor FARP1 as a GPCR effector essential for TNT formation, acting via Cdc42. Altogether, our study pioneers a link between Gi/o-coupled GPCRs and TNT development and sheds light into the intricate signaling pathways governing the generation of specialized actin-rich elongated structures in response to bioactive signaling lipids.
类花生酸激活 G 蛋白偶联受体(GPCR)与细胞骨架重排之间的功能关联在很大程度上仍未得到探索。在这里,我们使用人类肾上腺皮质癌细胞模型,建立了 GPCR OXER1 被其天然激动剂,类花生酸 5-氧代二十碳四烯酸激活后,导致形成丝状伪足样伸长突起,将相邻细胞连接起来,这种结构称为隧道纳米管(TNT)样结构。该效应可被百日咳毒素和 GUE1654 减弱,后者是 OXER1 激活下游 Gβγ 通路的偏向性拮抗剂。我们还观察到百日咳毒素依赖性 TNT 生物发生对溶血磷脂酸的反应,表明这是由 Gi/o 偶联 GPCR 驱动的一般反应。5-氧代二十碳四烯酸或溶血磷脂酸生成 TNT 部分依赖于表皮生长因子受体的转激活,并且被磷酯酰肌醇 3-激酶抑制所破坏。随后的信号分析显示,需要磷脂酶 Cβ3 及其下游效应蛋白蛋白激酶 Cα。与 Rho 小 GTPase 在形成富含肌动蛋白的突起结构中的作用一致,我们确定了磷酯酰肌醇 3-激酶调节的鸟嘌呤核苷酸交换因子 FARP1 是 TNT 形成所必需的 GPCR 效应物,通过 Cdc42 发挥作用。总之,我们的研究开创了 Gi/o 偶联 GPCR 与 TNT 发育之间的联系,并揭示了调节生物活性信号脂质产生特殊富含肌动蛋白的伸长结构的复杂信号通路。