Suppr超能文献

肽组装体力学性能的高通量筛选

High-throughput Screening of the Mechanical Properties of Peptide Assemblies.

作者信息

Yorke Sarah K, Yang Zhenze, Levin Aviad, Ray Alice, Boamah Jeremy Owusu, Knowles Tuomas P J, Buehler Markus J

机构信息

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.

Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Room 1-235A-B, Cambridge, 02139, MA, USA.

出版信息

ArXiv. 2025 May 13:arXiv:2505.08850v1.

Abstract

Peptides are recognized for their varied self-assembly behaviors, forming a wide array of structures and geometries, such as spheres, fibers, and hydrogels, each presenting a unique set of material properties. The functionalities of these materials hold expectional interest for applications in biology, medicine, photonics, nanotechnology and the food industry. In specific, the ability to exploit peptides as viable and sustainable mechanical materials requires sequence design that enables superior performance, notably a high Young's modulus. As the peptide sequence space is vast, however, even a slight increase in sequence length leads to an exponential increase in the number of potential peptide sequences to be characterized. Here, we combine coarse-grained molecular dynamics simulations, atomic force microscopy experiments and machine learning models to correlate the sequence length and composition with the mechanical properties of self-assembled peptides. We calculate the Young's modulus for all possible amino acid sequences of di- and tripeptides using high-throughput coarse-grained methods, and validate these calculations through in-situ mechanical characterization. For pentapeptides, we select and calculate properties for a subset of sequences to train a machine learning model, which allows us to predict the modulus for other sequences. The combined workflow not only identifies promising peptide candidates with exceptional mechanical performances, but also extends current understanding of the sequence-to-function relationships for peptide materials, for specific applications.

摘要

肽因其多样的自组装行为而闻名,可形成各种结构和几何形状,如球体、纤维和水凝胶,每种都具有独特的材料特性。这些材料的功能在生物学、医学、光子学、纳米技术和食品工业中的应用引起了极大的兴趣。具体而言,将肽用作可行且可持续的机械材料的能力需要进行序列设计,以实现卓越的性能,特别是高杨氏模量。然而,由于肽序列空间巨大,即使序列长度略有增加,需要表征的潜在肽序列数量也会呈指数增长。在这里,我们结合粗粒度分子动力学模拟、原子力显微镜实验和机器学习模型,将序列长度和组成与自组装肽的机械性能相关联。我们使用高通量粗粒度方法计算二肽和三肽所有可能氨基酸序列的杨氏模量,并通过原位力学表征验证这些计算。对于五肽,我们选择并计算一部分序列的特性以训练机器学习模型,这使我们能够预测其他序列的模量。这种组合工作流程不仅识别出具有卓越机械性能的有前景的肽候选物,还扩展了当前对肽材料特定应用中序列与功能关系的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7a3/12132274/72bf212d3774/nihpp-2505.08850v1-f0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验