Suppr超能文献

通过将 ICD-10 青光眼严重程度分类系统和光学相干断层扫描相结合来提高临床实践中的青光眼分期。

Improving glaucoma staging in clinical practice by combining the ICD-10 glaucoma severity classification system and optical coherence tomography.

机构信息

Bernard and Shirlee Brown Glaucoma Research Laboratory, Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, 635 W 165th St, New York, NY, 10032, USA.

Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

出版信息

Eye (Lond). 2024 Jan;38(1):153-160. doi: 10.1038/s41433-023-02650-5. Epub 2023 Jun 30.

Abstract

OBJECTIVE

The International Classification of Disease, 10th revision (ICD-10) codes used for glaucoma severity classification are based on the 24-2 visual-field (VF) test. This study aim was to assess the added value of providing clinicians with optical coherence tomography (OCT) data, in addition to functional data, for glaucoma staging in clinical practice.

EXPOSURE

Disease classification was determined for 54 glaucoma eyes, according to the principles of the ICD-10 guidelines. Eyes were independently graded in a masked fashion using the 24-2 VF test and 10-2 VF test, with and without OCT information. The reference standard (RS) for severity was determined using a previously published automated structure-function topographic agreement for glaucomatous damage using all available information.

RESULTS

The RS classified eyes as mild, moderate and advanced in 3, 16 and 35 cases, respectively. Individual and combined 24-2 and 10-2 based gradings were significantly different from the RS (all P < 0.005), with Kappa agreements of 0.26, 0.45 and 0.42 respectively (P < 0.001). Classifications using OCT combined with either of the VF were not-significantly different from the RS (P > 0.3) with Kappa agreements of 0.56 and 0.57 respectively (P < 0.001). Combining 24-2 with OCT had less severity overestimations while 10-2 with OCT had fewer underestimations.

CONCLUSION

Combining OCT and VF data provides better staging of glaucoma severity than VF data alone. The 24-2 and OCT combination seems most appropriate given the high concordance with the RS and less overestimation of severity. Incorporating structural information into disease stages allows clinicians to set more appropriate severity-based treatment targets for individual patients.

摘要

目的

用于青光眼严重程度分类的国际疾病分类第 10 版(ICD-10)代码基于 24-2 视野(VF)测试。本研究旨在评估为临床医生提供除功能数据外的光学相干断层扫描(OCT)数据,对青光眼分期的附加价值。

暴露情况

根据 ICD-10 指南的原则,对 54 只青光眼眼进行了疾病分类。使用 24-2 VF 测试和 10-2 VF 测试,分别独立地对眼睛进行了盲法分级,并结合和不结合 OCT 信息。使用以前发表的使用所有可用信息的青光眼损伤的自动结构-功能拓扑一致性的方法,确定严重程度的参考标准(RS)。

结果

RS 将眼分别分类为轻度、中度和重度,分别为 3、16 和 35 例。个体和联合的 24-2 和 10-2 分级与 RS 显著不同(均 P<0.005),Kappa 一致性分别为 0.26、0.45 和 0.42(均 P<0.001)。使用 OCT 结合任一种 VF 的分类与 RS 无显著差异(P>0.3),Kappa 一致性分别为 0.56 和 0.57(均 P<0.001)。24-2 结合 OCT 时,严重程度高估较少,而 10-2 结合 OCT 时,低估较少。

结论

与单独使用 VF 数据相比,结合 OCT 和 VF 数据可更好地分期青光眼严重程度。考虑到与 RS 的高度一致性和对严重程度的高估较少,24-2 和 OCT 的组合似乎最合适。将结构信息纳入疾病分期可使临床医生为个体患者设定更合适的基于严重程度的治疗目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/473e/10764715/056a01d2e603/41433_2023_2650_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验