Institut de Neurosciences des Systèmes, Aix-Marseille Universitè, Marseille, France; Deparment of Biomedical Science, University of Sassari, Sassari, Italy; Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy.
Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy; Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy.
Neuroimage. 2023 Aug 15;277:120260. doi: 10.1016/j.neuroimage.2023.120260. Epub 2023 Jun 29.
Subject differentiation bears the possibility to individualize brain analyses. However, the nature of the processes generating subject-specific features remains unknown. Most of the current literature uses techniques that assume stationarity (e.g., Pearson's correlation), which might fail to capture the non-linear nature of brain activity. We hypothesize that non-linear perturbations (defined as neuronal avalanches in the context of critical dynamics) spread across the brain and carry subject-specific information, contributing the most to differentiability. To test this hypothesis, we compute the avalanche transition matrix (ATM) from source-reconstructed magnetoencephalographic data, as to characterize subject-specific fast dynamics. We perform differentiability analysis based on the ATMs, and compare the performance to that obtained using Pearson's correlation (which assumes stationarity). We demonstrate that selecting the moments and places where neuronal avalanches spread improves differentiation (P < 0.0001, permutation testing), despite the fact that most of the data (i.e., the linear part) are discarded. Our results show that the non-linear part of the brain signals carries most of the subject-specific information, thereby clarifying the nature of the processes that underlie individual differentiation. Borrowing from statistical mechanics, we provide a principled way to link emergent large-scale personalized activations to non-observable, microscopic processes.
主体差异具有使大脑分析个体化的可能性。然而,产生主体特异性特征的过程的本质仍然未知。目前的大多数文献都使用假设平稳性的技术(例如 Pearson 相关系数),这可能无法捕捉到大脑活动的非线性性质。我们假设非线性扰动(在临界动力学的背景下定义为神经元雪崩)在大脑中传播并携带主体特异性信息,对可区分性的贡献最大。为了验证这一假设,我们从源重建的脑磁图数据中计算了雪崩转移矩阵(ATM),以描述主体特异性的快速动力学。我们基于 ATMs 进行可区分性分析,并将性能与使用 Pearson 相关系数(假设平稳性)获得的性能进行比较。我们证明,尽管丢弃了大部分数据(即线性部分),选择神经元雪崩传播的时刻和位置可以提高区分度(P < 0.0001,置换检验)。我们的结果表明,大脑信号的非线性部分携带了大部分主体特异性信息,从而阐明了构成个体差异的过程的本质。我们借鉴统计力学,为将新兴的大规模个性化激活与不可观测的微观过程联系起来提供了一种原则性的方法。