Suppr超能文献

基于动态脑状态的脑磁图降维

Magnetoencephalography Dimensionality Reduction Informed by Dynamic Brain States.

作者信息

Cathignol Annie E, Kusch Lionel, Angiolelli Marianna, Lopez Emahnuel Troisi, Polverino Arianna, Romano Antonella, Sorrentino Giuseppe, Jirsa Viktor, Rabuffo Giovanni, Sorrentino Pierpaolo

机构信息

Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.

School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, Yverdon-les-Bains, Switzerland.

出版信息

Eur J Neurosci. 2025 May;61(9):e70128. doi: 10.1111/ejn.70128.

Abstract

Complex spontaneous brain dynamics mirror the large number of interactions taking place among regions, supporting higher functions. Such complexity is manifested in the interregional dependencies among signals derived from different brain areas, as observed utilising neuroimaging techniques, like magnetoencephalography. The dynamics of this data produce numerous subsets of active regions at any moment as they evolve. Notably, converging evidence shows that these states can be understood in terms of transient coordinated events that spread across the brain over multiple spatial and temporal scales. Those can be used as a proxy of the 'effectiveness' of the dynamics, as they become stereotyped or disorganised in neurological diseases. However, given the high-dimensional nature of the data, representing them has been challenging thus far. Dimensionality reduction techniques are typically deployed to describe complex interdependencies and improve their interpretability. However, many dimensionality reduction techniques lose information about the sequence of configurations that took place. Here, we leverage a newly described algorithm, potential of heat-diffusion for affinity-based transition embedding (PHATE), specifically designed to preserve the dynamics of the system in the low-dimensional embedding space. We analysed source-reconstructed resting-state magnetoencephalography from 18 healthy subjects to represent the dynamics of the configuration in low-dimensional space. After reduction with PHATE, unsupervised clustering via K-means is applied to identify distinct clusters. The topography of the states is described, and the dynamics are represented as a transition matrix. All the results have been checked against null models, providing a parsimonious account of the large-scale, fast, aperiodic dynamics during resting-state. The study applies the PHATE algorithm to source-reconstructed magnetoencephalography (MEG) data, reducing dimensionality while preserving large-scale neural dynamics. Results reveal distinct configurations, or 'states', of brain activity, identified via unsupervised clustering. Their transitions are characterised by a transition matrix. This method offers a simplified yet rich view of complex brain interactions, opening new perspectives on large-scale brain dynamics in health and disease.

摘要

复杂的自发脑动力学反映了大脑区域间大量的相互作用,支持着高级功能。这种复杂性体现在利用神经成像技术(如脑磁图)观察到的不同脑区信号之间的区域间依赖性上。随着这些数据的动态演变,在任何时刻都会产生大量活跃区域的子集。值得注意的是,越来越多的证据表明,这些状态可以通过在多个空间和时间尺度上遍布大脑的瞬态协调事件来理解。由于它们在神经系统疾病中会变得刻板或紊乱,因此可以用作动力学“有效性”的代理。然而,鉴于数据的高维性质,迄今为止对其进行表示一直具有挑战性。通常采用降维技术来描述复杂的相互依赖性并提高其可解释性。然而,许多降维技术会丢失有关发生的配置序列的信息。在此,我们利用一种新描述的算法——基于亲和力的转移嵌入热扩散势(PHATE),该算法专门设计用于在低维嵌入空间中保留系统的动力学。我们分析了18名健康受试者的源重建静息态脑磁图,以在低维空间中表示配置的动力学。在用PHATE进行降维后,通过K均值进行无监督聚类以识别不同的簇。描述了状态的地形图,并将动力学表示为转移矩阵。所有结果都已与零模型进行核对,为静息态期间的大规模、快速、非周期性动力学提供了简洁的解释。该研究将PHATE算法应用于源重建脑磁图(MEG)数据,在保留大规模神经动力学的同时降低维度。结果揭示了通过无监督聚类识别出的不同的大脑活动配置或“状态”。它们的转变由转移矩阵表征。这种方法提供了对复杂脑相互作用的简化但丰富的视图,为健康和疾病状态下的大规模脑动力学开辟了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc88/12067517/a9490211ef4d/EJN-61-0-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验