Suppr超能文献

基于多尺度特征提取的深度学习神经网络的端到端心律失常诊断模型。

An end-end arrhythmia diagnosis model based on deep learning neural network with multi-scale feature extraction.

机构信息

Ganzhou Polytechnic, Zhanggong District, Ganzhou City, 341099, Jiangxi Province, China.

The First Affiliated Hospital of Gannan Medical College, No. 23, Qingnian Road, Ganzhou City, 341001, Jiangxi Province, China.

出版信息

Phys Eng Sci Med. 2023 Sep;46(3):1341-1352. doi: 10.1007/s13246-023-01286-9. Epub 2023 Jul 1.

Abstract

This study presents an innovative end-to-end deep learning arrhythmia diagnosis model that aims to address the problems in arrhythmia diagnosis. The model performs pre-processing of the heartbeat signal by automatically and efficiently extracting time-domain, time-frequency-domain and multi-scale features at different scales. These features are imported into an adaptive online convolutional network-based classification inference module for arrhythmia diagnosis. Experimental results show that the AOCT-based deep learning neural network diagnostic module has excellent parallel computing and classification inference capabilities, and the overall performance of the model improves with increasing scales. In particular, when multi-scale features are used as inputs, the model is able to learn both time-frequency domain information and other rich information, thus significantly improving the performance of the end-to-end diagnostic model. The final results show that the AOCT-based deep learning neural network model has an average accuracy of 99.72%, a recall of 99.62%, and an F1 score of 99.3% in diagnosing four common heart diseases.

摘要

本研究提出了一种新颖的端到端深度学习心律失常诊断模型,旨在解决心律失常诊断中的问题。该模型通过自动有效地提取不同尺度的时域、时频域和多尺度特征,对心跳信号进行预处理。这些特征被导入基于自适应在线卷积网络的分类推理模块,用于心律失常诊断。实验结果表明,基于 AOCT 的深度学习神经网络诊断模块具有出色的并行计算和分类推理能力,并且模型的整体性能随着尺度的增加而提高。特别是,当使用多尺度特征作为输入时,该模型能够学习时频域信息和其他丰富信息,从而显著提高端到端诊断模型的性能。最终结果表明,基于 AOCT 的深度学习神经网络模型在诊断四种常见心脏病时的平均准确率为 99.72%,召回率为 99.62%,F1 得分为 99.3%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验