Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid, Jordan.
Med Biol Eng Comput. 2020 Jan;58(1):41-53. doi: 10.1007/s11517-019-02066-y. Epub 2019 Nov 14.
Since introducing optical coherence tomography (OCT) technology for 2D eye imaging, it has become one of the most important and widely used imaging modalities for the noninvasive assessment of retinal eye diseases. Age-related macular degeneration (AMD) and diabetic macular edema eye disease are the leading causes of blindness being diagnosed using OCT. Recently, by developing machine learning and deep learning techniques, the classification of eye retina diseases using OCT images has become quite a challenge. In this paper, a novel automated convolutional neural network (CNN) architecture for a multiclass classification system based on spectral-domain optical coherence tomography (SD-OCT) has been proposed. The system used to classify five types of retinal diseases (age-related macular degeneration (AMD), choroidal neovascularization (CNV), diabetic macular edema (DME), and drusen) in addition to normal cases. The proposed CNN architecture with a softmax classifier overall correctly identified 100% of cases with AMD, 98.86% of cases with CNV, 99.17% cases with DME, 98.97% cases with drusen, and 99.15% cases of normal with an overall accuracy of 95.30%. This architecture is a potentially impactful tool for the diagnosis of retinal diseases using SD-OCT images.
自从引入光学相干断层扫描(OCT)技术进行 2D 眼部成像以来,它已成为用于非侵入性评估视网膜眼部疾病的最重要和最广泛使用的成像方式之一。年龄相关性黄斑变性(AMD)和糖尿病性黄斑水肿眼病是使用 OCT 诊断的致盲的主要原因。最近,通过开发机器学习和深度学习技术,使用 OCT 图像对眼部视网膜疾病进行分类已成为一项极具挑战性的任务。在本文中,提出了一种新颖的基于光谱域光学相干断层扫描(SD-OCT)的多类分类系统的自动化卷积神经网络(CNN)架构。该系统用于对五种视网膜疾病(年龄相关性黄斑变性(AMD)、脉络膜新生血管(CNV)、糖尿病性黄斑水肿(DME)和玻璃膜疣)以及正常病例进行分类。所提出的 CNN 架构与 softmax 分类器相结合,总体上正确识别了 100%的 AMD 病例、98.86%的 CNV 病例、99.17%的 DME 病例、98.97%的玻璃膜疣病例和 99.15%的正常病例,总体准确率为 95.30%。该架构是使用 SD-OCT 图像诊断视网膜疾病的一种有潜力的工具。