Suppr超能文献

在患有与拔牙和植入相关骨质疏松症的患者中使用自动化机器学习预测药物相关性颌骨坏死(MRONJ):一项回顾性研究。

Prediction of medication-related osteonecrosis of the jaw (MRONJ) using automated machine learning in patients with osteoporosis associated with dental extraction and implantation: a retrospective study.

作者信息

Kwack Da Woon, Park Sung Min

机构信息

Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University, Cheonan, Korea.

出版信息

J Korean Assoc Oral Maxillofac Surg. 2023 Jun 30;49(3):135-141. doi: 10.5125/jkaoms.2023.49.3.135.

Abstract

OBJECTIVES

This study aimed to develop and validate machine learning (ML) models using H2O-AutoML, an automated ML program, for predicting medication-related osteonecrosis of the jaw (MRONJ) in patients with osteoporosis undergoing tooth extraction or implantation. Patients and.

METHODS

We conducted a retrospective chart review of 340 patients who visited Dankook University Dental Hospital between January 2019 and June 2022 who met the following inclusion criteria: female, age ≥55 years, osteoporosis treated with antiresorptive therapy, and recent dental extraction or implantation. We considered medication administration and duration, demographics, and systemic factors (age and medical history). Local factors, such as surgical method, number of operated teeth, and operation area, were also included. Six algorithms were used to generate the MRONJ prediction model.

RESULTS

Gradient boosting demonstrated the best diagnostic accuracy, with an area under the receiver operating characteristic curve (AUC) of 0.8283. Validation with the test dataset yielded a stable AUC of 0.7526. Variable importance analysis identified duration of medication as the most important variable, followed by age, number of teeth operated, and operation site.

CONCLUSION

ML models can help predict MRONJ occurrence in patients with osteoporosis undergoing tooth extraction or implantation based on questionnaire data acquired at the first visit.

摘要

目的

本研究旨在开发并验证使用自动化机器学习程序H2O-AutoML的机器学习(ML)模型,用于预测接受拔牙或种植牙手术的骨质疏松症患者的药物相关性颌骨坏死(MRONJ)。患者与……

方法

我们对2019年1月至2022年6月期间就诊于韩国檀国大学牙科学院医院的340例患者进行了回顾性病历审查,这些患者符合以下纳入标准:女性,年龄≥55岁,接受抗吸收治疗的骨质疏松症患者,近期进行过拔牙或种植牙手术。我们考虑了药物使用情况及持续时间、人口统计学特征和全身因素(年龄和病史)。还纳入了局部因素,如手术方法、手术牙齿数量和手术区域。使用六种算法生成MRONJ预测模型。

结果

梯度提升算法显示出最佳诊断准确性,受试者工作特征曲线(AUC)下面积为0.8283。使用测试数据集进行验证得到的稳定AUC为0.7526。变量重要性分析确定药物使用持续时间为最重要变量,其次是年龄、手术牙齿数量和手术部位。

结论

基于首次就诊时获取的问卷数据,ML模型有助于预测接受拔牙或种植牙手术的骨质疏松症患者发生MRONJ的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7854/10318313/38b0f5fb8ea2/jkaoms-49-3-135-f1.jpg

相似文献

10
The effect of drug holiday on preventing medication-related osteonecrosis of the jaw in osteoporotic rat model.
J Orthop Translat. 2023 Jan 10;39:55-62. doi: 10.1016/j.jot.2022.12.006. eCollection 2023 Mar.

本文引用的文献

1
Prediction of Hidden Coronary Artery Disease Using Machine Learning in Patients With Acute Ischemic Stroke.
Neurology. 2022 Jul 5;99(1):e55-e65. doi: 10.1212/WNL.0000000000200576. Epub 2022 Apr 25.
3
American Association of Oral and Maxillofacial Surgeons' Position Paper on Medication-Related Osteonecrosis of the Jaws-2022 Update.
J Oral Maxillofac Surg. 2022 May;80(5):920-943. doi: 10.1016/j.joms.2022.02.008. Epub 2022 Feb 21.
5
Risk factors associated with onset of medication-related osteonecrosis of the jaw in patients treated with denosumab.
Clin Oral Investig. 2022 Mar;26(3):2839-2852. doi: 10.1007/s00784-021-04261-4. Epub 2021 Nov 23.
6
Teriparatide Promotes Bone Healing in Medication-Related Osteonecrosis of the Jaw: A Placebo-Controlled, Randomized Trial.
J Clin Oncol. 2020 Sep 10;38(26):2971-2980. doi: 10.1200/JCO.19.02192. Epub 2020 Jul 2.
7
The impact of machine learning on patient care: A systematic review.
Artif Intell Med. 2020 Mar;103:101785. doi: 10.1016/j.artmed.2019.101785. Epub 2019 Dec 31.
8
Artificial intelligence in dentistry: current applications and future perspectives.
Quintessence Int. 2020;51(3):248-257. doi: 10.3290/j.qi.a43952.
9
Comparing different supervised machine learning algorithms for disease prediction.
BMC Med Inform Decis Mak. 2019 Dec 21;19(1):281. doi: 10.1186/s12911-019-1004-8.
10
Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm.
J Dent. 2018 Oct;77:106-111. doi: 10.1016/j.jdent.2018.07.015. Epub 2018 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验