Suppr超能文献

机器学习预测与拔牙相关的双膦酸盐相关性颌骨坏死的发生:初步报告。

Machine learning to predict the occurrence of bisphosphonate-related osteonecrosis of the jaw associated with dental extraction: A preliminary report.

机构信息

Department of Oral & Maxillofacial Surgery, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

Department of Radiological Science, Yonsei University College of Medicine, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

出版信息

Bone. 2018 Nov;116:207-214. doi: 10.1016/j.bone.2018.04.020. Epub 2018 Apr 24.

Abstract

INTRODUCTION

The aim of this study was to build and validate five types of machine learning models that can predict the occurrence of BRONJ associated with dental extraction in patients taking bisphosphonates for the management of osteoporosis.

PATIENTS & METHODS: A retrospective review of the medical records was conducted to obtain cases and controls for the study. Total 125 patients consisting of 41 cases and 84 controls were selected for the study. Five machine learning prediction algorithms including multivariable logistic regression model, decision tree, support vector machine, artificial neural network, and random forest were implemented. The outputs of these models were compared with each other and also with conventional methods, such as serum CTX level. Area under the receiver operating characteristic (ROC) curve (AUC) was used to compare the results.

RESULTS

The performance of machine learning models was significantly superior to conventional statistical methods and single predictors. The random forest model yielded the best performance (AUC = 0.973), followed by artificial neural network (AUC = 0.915), support vector machine (AUC = 0.882), logistic regression (AUC = 0.844), decision tree (AUC = 0.821), drug holiday alone (AUC = 0.810), and CTX level alone (AUC = 0.630).

CONCLUSIONS

Machine learning methods showed superior performance in predicting BRONJ associated with dental extraction compared to conventional statistical methods using drug holiday and serum CTX level. Machine learning can thus be applied in a wide range of clinical studies.

摘要

简介

本研究旨在构建和验证五种机器学习模型,以预测接受双膦酸盐治疗骨质疏松症的患者拔牙后发生与 BRONJ 相关的情况。

患者和方法

对病历进行回顾性审查,以获取研究的病例和对照。共选择了 125 名患者,其中 41 例为病例,84 例为对照。实施了五种机器学习预测算法,包括多变量逻辑回归模型、决策树、支持向量机、人工神经网络和随机森林。比较了这些模型的输出结果,并与传统方法(如血清 CTX 水平)进行了比较。使用接收者操作特征(ROC)曲线下的面积(AUC)来比较结果。

结果

机器学习模型的性能明显优于传统统计方法和单一预测因子。随机森林模型表现最佳(AUC=0.973),其次是人工神经网络(AUC=0.915)、支持向量机(AUC=0.882)、逻辑回归(AUC=0.844)、决策树(AUC=0.821)、药物假期单独(AUC=0.810)和 CTX 水平单独(AUC=0.630)。

结论

与使用药物假期和血清 CTX 水平的传统统计方法相比,机器学习方法在预测与拔牙相关的 BRONJ 方面表现出更好的性能。因此,机器学习可以应用于广泛的临床研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验