Evans Dominique C S, Khamas Amanda B, Marcussen Lisbeth, Rasmussen Kristian S, Klitgaard Janne K, Kallipolitis Birgitte H, Nielsen Janni, Otzen Daniel E, Leake Mark C, Meyer Rikke L
Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.
Department of Physics, University of York, York, UK.
Microb Cell. 2023 Jun 28;10(7):145-156. doi: 10.15698/mic2023.07.800. eCollection 2023 Jul 3.
is a major human pathogen that utilises many surface-associated and secreted proteins to form biofilms and cause disease. However, our understanding of these processes is limited by challenges of using fluorescent protein reporters in their native environment, because they must be exported and fold correctly to become fluorescent. Here, we demonstrate the feasibility of using the monomeric superfolder GFP (msfGFP) exported from By fusing msfGFP to signal peptides for the Secretory (Sec) and Twin Arginine Translocation (Tat) pathways, the two major secretion pathways in we quantified msfGFP fluorescence in bacterial cultures and cell-free supernatant from the cultures. When fused to a Tat signal peptide, we detected msfGFP fluorescence inside but not outside bacterial cells, indicating a failure to export msfGFP. However, when fused to a Sec signal peptide, msfGFP fluorescence was present outside cells, indicating successful export of the msfGFP in the unfolded state, followed by extracellular folding and maturation to the photoactive state. We applied this strategy to study coagulase (Coa), a secreted protein and a major contributor to the formation of a fibrin network in biofilms that protects bacteria from the host immune system and increases attachment to host surfaces. We confirmed that a genomically integrated C-terminal fusion of Coa to msfGFP does not impair the activity of Coa or its localisation within the biofilm matrix. Our findings demonstrate that msfGFP is a good candidate fluorescent reporter to consider when studying proteins secreted by the Sec pathway in .
是一种主要的人类病原体,它利用许多表面相关蛋白和分泌蛋白形成生物膜并引发疾病。然而,我们对这些过程的理解受到在其天然环境中使用荧光蛋白报告基因所面临挑战的限制,因为它们必须被输出并正确折叠才能发出荧光。在这里,我们证明了使用从 输出的单体超折叠绿色荧光蛋白(msfGFP)的可行性。通过将msfGFP与分泌(Sec)途径和双精氨酸转运(Tat)途径( 中的两个主要分泌途径)的信号肽融合,我们对细菌培养物和培养物的无细胞上清液中的msfGFP荧光进行了定量。当与Tat信号肽融合时,我们在细菌细胞内部而非外部检测到msfGFP荧光,这表明msfGFP未能输出。然而,当与Sec信号肽融合时,msfGFP荧光出现在细胞外部,这表明msfGFP以未折叠状态成功输出,随后在细胞外折叠并成熟为光活性状态。我们应用这种策略来研究凝固酶(Coa),一种分泌蛋白,它是 生物膜中纤维蛋白网络形成的主要促成因素,该网络可保护细菌免受宿主免疫系统的攻击并增加细菌与宿主表面的附着。我们证实,Coa与msfGFP的基因组整合C端融合不会损害Coa的活性或其在生物膜基质中的定位。我们的研究结果表明,在研究 中由Sec途径分泌的蛋白质时,msfGFP是一个值得考虑的良好候选荧光报告基因。