Suppr超能文献

银纳米星上的等离子体化学:通过等离子体失活效应进行农药噻虫啉键断裂的拉曼/表面增强拉曼散射实验与理论研究

Plasmon Chemistry on Ag Nanostars: Experimental and Theoretical Raman/SERS Study of the Pesticide Thiacloprid Bond Cleavage by the Plasmon Deactivation Effect.

作者信息

Celis Freddy, Aracena Andrés, García Macarena, Segura Del Río Rodrigo, Sanchez-Cortes Santiago, Leyton Patricio

机构信息

Laboratorio de Procesos Fotónicos y Electroquímicos, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2360002, Chile.

Instituto de Ciencias Naturales, Universidad de las Américas, Manuel Montt 948, Santiago 7500000, Chile.

出版信息

ACS Omega. 2023 Jun 13;8(25):22887-22898. doi: 10.1021/acsomega.3c01878. eCollection 2023 Jun 27.

Abstract

Silver nanoparticles (AgNPs) were synthetized and employed in surface-enhanced Raman scattering measurements to study the chemical behavior when thiacloprid (Thia) interacts with the surface of Ag nanospheres (AgNSp) and Ag nanostars (AgNSt) upon excitation of the system with a 785 nm laser. Experimental results show that the deactivation of the localized surface plasmon resonance induces structural changes in Thia. When AgNSp are used, it is possible to observe a mesomeric effect in the cyanamide moiety. On the other hand, when AgNSt are employed, it promotes the cleavage of the methylene (-CH-) bridge in Thia to produce two molecular fragments. To support these results, theoretical calculations based on topological parameters described by the atoms in molecules theory, Laplacian of the electron density at the bond critical point (∇ρ BCP), Laplacian bond order, and bond dissociation energies were made, confirming that the bond cleavage is centered at the -CH- bridge in Thia.

摘要

合成了银纳米颗粒(AgNPs),并将其用于表面增强拉曼散射测量,以研究在785 nm激光激发系统时,噻虫啉(Thia)与银纳米球(AgNSp)和银纳米星(AgNSt)表面相互作用时的化学行为。实验结果表明,局域表面等离子体共振的失活会引起噻虫啉的结构变化。当使用AgNSp时,可以观察到氰胺部分的中介效应。另一方面,当使用AgNSt时,它会促进噻虫啉中亚甲基(-CH-)桥的断裂,产生两个分子片段。为了支持这些结果,基于分子中原子理论描述的拓扑参数、键临界点处电子密度的拉普拉斯算子(∇ρ BCP)、拉普拉斯键序和键解离能进行了理论计算,证实键断裂以噻虫啉中的-CH-桥为中心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cca/10308575/80c5fa772904/ao3c01878_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验