Kaneko Hiromasa
Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
ACS Omega. 2023 Jun 14;8(25):23218-23225. doi: 10.1021/acsomega.3c03722. eCollection 2023 Jun 27.
Feature importance (FI) is used to interpret the machine learning model = () constructed between the explanatory variables or features, , and the objective variables, . For a large number of features, interpreting the model in the order of increasing FI is inefficient when there are similarly important features. Therefore, in this study, a method is developed to interpret models by considering the similarities between the features in addition to the FI. The cross-validated permutation feature importance (CVPFI), which can be calculated using any machine learning method and can handle multicollinearity problems, is used as the FI, while the absolute correlation and maximal information coefficients are used as metrics of feature similarity. Machine learning models could be effectively interpreted by considering the features from the Pareto fronts, where CVPFI is large and the feature similarity is small. Analyses of actual molecular and material data sets confirm that the proposed method enables the accurate interpretation of machine learning models.
特征重要性(FI)用于解释在解释变量或特征(x)与目标变量(y)之间构建的机器学习模型(y = f(x))。对于大量特征而言,当存在相似重要性的特征时,按FI递增顺序解释模型效率低下。因此,在本研究中,开发了一种除FI外还考虑特征间相似性来解释模型的方法。可使用任何机器学习方法计算且能处理多重共线性问题的交叉验证排列特征重要性(CVPFI)用作FI,而绝对相关性和最大信息系数用作特征相似性的度量。通过考虑帕累托前沿的特征(CVPFI大且特征相似性小),可以有效地解释机器学习模型。对实际分子和材料数据集的分析证实,所提出的方法能够准确解释机器学习模型。