Suppr超能文献

对于基于脑电图的麻醉监测而言,排列熵并非一个与年龄无关的参数。

Permutation entropy is not an age-independent parameter for EEG-based anesthesia monitoring.

作者信息

Hight Darren, Obert David P, Kratzer Stephan, Schneider Gerhard, Sepulveda Pablo, Sleigh Jamie, García Paul S, Kreuzer Matthias

机构信息

Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

Department of Anesthesiology and Intensive Care Medicine, School of Medicine, Technical University of Munich, Munich, Germany.

出版信息

Front Aging Neurosci. 2023 Jun 15;15:1173304. doi: 10.3389/fnagi.2023.1173304. eCollection 2023.

Abstract

BACKGROUND

An optimized anesthesia monitoring using electroencephalographic (EEG) information in the elderly could help to reduce the incidence of postoperative complications. Processed EEG information that is available to the anesthesiologist is affected by the age-induced changes of the raw EEG. While most of these methods indicate a "more awake" patient with age, the permutation entropy (PeEn) has been proposed as an age-independent measure. In this article, we show that PeEn is also influenced by age, independent of parameter settings.

METHODS

We retrospectively analyzed the EEG of more than 300 patients, recorded during steady state anesthesia without stimulation, and calculated the PeEn for different embedding dimensions m that was applied to the EEG filtered to a wide variety of frequency ranges. We constructed linear models to evaluate the relationship between age and PeEn. To compare our results to published studies, we also performed a stepwise dichotomization and used non-parametric tests and effect sizes for pairwise comparisons.

RESULTS

We found a significant influence of age on PeEn for all settings except for narrow band EEG activity. The analysis of the dichotomized data also revealed significant differences between old and young patients for the PeEn settings used in published studies.

CONCLUSION

Based on our findings, we could show the influence of age on PeEn. This result was independent of parameter, sample rate, and filter settings. Hence, age should be taken into consideration when using PeEn to monitor patient EEG.

摘要

背景

在老年人中使用脑电图(EEG)信息进行优化的麻醉监测有助于降低术后并发症的发生率。麻醉医生可获得的处理后的EEG信息会受到原始EEG随年龄变化的影响。虽然大多数这些方法表明患者年龄越大“越清醒”,但排列熵(PeEn)已被提出作为一种与年龄无关的测量方法。在本文中,我们表明PeEn也受年龄影响,与参数设置无关。

方法

我们回顾性分析了300多名患者在无刺激的稳态麻醉期间记录的脑电图,并计算了应用于不同频率范围滤波后的脑电图的不同嵌入维度m的PeEn。我们构建了线性模型来评估年龄与PeEn之间的关系。为了将我们的结果与已发表的研究进行比较,我们还进行了逐步二分法,并使用非参数检验和效应大小进行成对比较。

结果

我们发现,除窄带EEG活动外,在所有设置中年龄对PeEn均有显著影响。对二分数据的分析还显示,在已发表研究中使用的PeEn设置下,老年患者和年轻患者之间存在显著差异。

结论

基于我们的研究结果,我们可以证明年龄对PeEn的影响。这一结果与参数、采样率和滤波器设置无关。因此,在使用PeEn监测患者脑电图时应考虑年龄因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验