Suppr超能文献

深入分析人类在不同意识状态下 Shannon 排列熵中特定有序模式的参数设置和概率分布。

An in-depth analysis of parameter settings and probability distributions of specific ordinal patterns in the Shannon permutation entropy during different states of consciousness in humans.

机构信息

Department of Anaesthesiology and Intensive Care Medicine, University Hospital Rechts Der Isar, Technical University of Munich, Munich, Germany.

Department Biology, Ludwig-Maximilians University of Munich, LMU Biocenter, Planegg-Martinsried, Munich, Germany.

出版信息

J Clin Monit Comput. 2024 Apr;38(2):385-397. doi: 10.1007/s10877-023-01051-z. Epub 2023 Jul 29.

Abstract

As electrical activity in the brain has complex and dynamic properties, the complexity measure permutation entropy (PeEn) has proven itself to reliably distinguish consciousness states recorded by the EEG. However, it has been shown that the focus on specific ordinal patterns instead of all of them produced similar results. Moreover, parameter settings influence the resulting PeEn value. We evaluated the impact of the embedding dimension m and the length of the EEG segment on the resulting PeEn. Moreover, we analysed the probability distributions of monotonous and non-occurring ordinal patterns in different parameter settings. We based our analyses on simulated data as well as on EEG recordings from volunteers, obtained during stable anaesthesia levels at defined, individualised concentrations. The results of the analysis on the simulated data show a dependence of PeEn on different influencing factors such as window length and embedding dimension. With the EEG data, we demonstrated that the probability P of monotonous patterns performs like PeEn in lower embedding dimension (m = 3, AUC = 0.88, [0.7, 1] in both), whereas the probability P of non-occurring patterns outperforms both methods in higher embedding dimensions (m = 5, PeEn: AUC = 0.91, [0.77, 1]; P(non-occurring patterns): AUC = 1, [1, 1]). We showed that the accuracy of PeEn in distinguishing consciousness states changes with different parameter settings. Furthermore, we demonstrated that for the purpose of separating wake from anaesthesia EEG solely pieces of information used for PeEn calculation, i.e., the probability of monotonous patterns or the number of non-occurring patterns may be equally functional.

摘要

由于大脑中的电活动具有复杂和动态的特性,复杂度测度排列熵(PeEn)已被证明能够可靠地区分 EEG 记录的意识状态。然而,已经表明,关注特定的有序模式而不是所有模式会产生相似的结果。此外,参数设置会影响所得 PeEn 值。我们评估了嵌入维度 m 和 EEG 段长度对所得 PeEn 的影响。此外,我们分析了不同参数设置下单调和非出现有序模式的概率分布。我们的分析基于模拟数据以及志愿者在稳定麻醉水平下获得的 EEG 记录,该水平在定义的个体化浓度下获得。对模拟数据的分析结果表明,PeEn 取决于不同的影响因素,如窗口长度和嵌入维度。对于 EEG 数据,我们证明了在较低的嵌入维度(m=3,AUC=0.88,[0.7, 1])下,单调模式的概率 P 表现得与 PeEn 相似,而在较高的嵌入维度(m=5,PeEn:AUC=0.91,[0.77, 1];P(非出现模式):AUC=1,[1, 1])下,非出现模式的概率 P 优于这两种方法。我们表明,PeEn 区分意识状态的准确性会随着不同的参数设置而变化。此外,我们证明了为了将清醒和麻醉 EEG 分开,PeEn 计算中使用的信息(即单调模式的概率或非出现模式的数量)可能同样有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbf7/10995010/07eb318ea950/10877_2023_1051_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验