From the Department of Anesthesiology and Intensive Care.
Department of Internal Medicine I, Technical University of Munich, School of Medicine, München, Germany.
Anesth Analg. 2021 Dec 1;133(6):1577-1587. doi: 10.1213/ANE.0000000000005704.
Intraoperative patient monitoring using the electroencephalogram (EEG) can help to adequately adjust the anesthetic level. Therefore, the processed EEG (pEEG) provides the anesthesiologist with the estimated anesthesia level. The commonly used approaches track the changes from a fast- and a low-amplitude EEG during wakefulness to a slow- and a high-amplitude EEG under general anesthesia. However, besides these changes, another EEG feature, a strong oscillatory activity in the alpha band (8-12 Hz), develops in the frontal EEG. Strong alpha-band activity during general anesthesia seems to reflect an appropriate anesthetic level for certain anesthetics, but the way the common pEEG approaches react to changes in the alpha-band activity is not well explained. Hence, we investigated the impact of an artificial alpha-band modulation on pEEG approaches used in anesthesia research.
We performed our analyses based on 30 seconds of simulated sedation (n = 25) EEG, simulated anesthesia (n = 25) EEG, and EEG episodes from 20 patients extracted from a steady state that showed a clearly identifiable alpha peak in the density spectral array (DSA) and a state entropy (GE Healthcare) around 50, indicative of adequate anesthesia. From these traces, we isolated the alpha activity by band-pass filtering (8-12 Hz) and added this alpha activity to or subtracted it from the signals in a stepwise manner. For each of the original and modified signals, the following pEEG values were calculated: (1) spectral edge frequency (SEF95), (2) beta ratio, (3) spectral entropy (SpEntr), (4) approximate entropy (ApEn), and (5) permutation entropy (PeEn).
The pEEG approaches showed different reactions to the alpha-band modification that depended on the data set and the amplification step. The beta ratio and PeEn decreased with increasing alpha activity for all data sets, indicating a deepening of anesthesia. The other pEEG approaches behaved nonuniformly. SEF95, SpEntr, and ApEn decreased with increasing alpha for the simulated anesthesia data (arousal) but decreased for simulated sedation. For the patient EEG, ApEn indicated an arousal, and SEF95 and SpEntr showed a nonuniform change.
Changes in the alpha-band activity lead to different reactions for different pEEG approaches. Hence, the presence of strong oscillatory alpha activity that reflects an adequate level of anesthesia may be interpreted differently, by an either increasing (arousal) or decreasing (deepening) pEEG value. This could complicate anesthesia navigation and prevent the adjustment to an adequate, alpha-dominant anesthesia level, when titrating by the pEEG values.
术中使用脑电图(EEG)对患者进行监测有助于充分调整麻醉水平。因此,处理后的脑电图(pEEG)为麻醉师提供了估计的麻醉水平。常用的方法是跟踪从清醒时的快而低幅度 EEG 到全身麻醉下的慢而高幅度 EEG 的变化。然而,除了这些变化之外,另一个 EEG 特征,即额部 EEG 中强烈的 alpha 波段(8-12 Hz)振荡活动也会出现。全身麻醉期间的强 alpha 波段活动似乎反映了某些麻醉剂的适当麻醉水平,但常用的 pEEG 方法对 alpha 波段活动变化的反应方式并没有得到很好的解释。因此,我们研究了人工 alpha 波段调制对麻醉研究中使用的 pEEG 方法的影响。
我们基于 30 秒模拟镇静(n = 25)EEG、模拟麻醉(n = 25)EEG 和从稳态中提取的 20 名患者的 EEG 片段进行分析,在密度谱阵列(DSA)中清楚地识别出 alpha 峰值,状态熵(GE Healthcare)约为 50,表明麻醉充分。从这些迹线中,我们通过带通滤波(8-12 Hz)分离 alpha 活动,并以逐步方式将其添加或减去信号。对于原始和修改后的每个信号,计算以下 pEEG 值:(1)光谱边缘频率(SEF95),(2)β比,(3)光谱熵(SpEntr),(4)近似熵(ApEn)和(5)排列熵(PeEn)。
pEEG 方法对 alpha 波段修饰的反应不同,这取决于数据集和放大步骤。所有数据集的β比和 PeEn 随着 alpha 活动的增加而降低,表明麻醉加深。其他 pEEG 方法的行为不一致。对于模拟麻醉数据(觉醒),SEF95、SpEntr 和 ApEn 随着 alpha 的增加而降低,但对于模拟镇静则降低。对于患者 EEG,ApEn 表明觉醒,SEF95 和 SpEntr 显示出不均匀的变化。
alpha 波段活动的变化导致不同的 pEEG 方法反应不同。因此,反映适当麻醉水平的强烈振荡 alpha 活动的存在可能会通过增加(觉醒)或减少(加深)pEEG 值来得到不同的解释。当通过 pEEG 值进行滴定时,这可能会使麻醉导航复杂化,并阻止调整到适当的 alpha 主导麻醉水平。