Dommer Abigail C, Wauer Nicholas A, Angle Kyle J, Davasam Aakash, Rubio Patiemma, Luo Man, Morris Clare K, Prather Kimberly A, Grassian Vicki H, Amaro Rommie E
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States.
ACS Cent Sci. 2023 May 4;9(6):1088-1103. doi: 10.1021/acscentsci.3c00184. eCollection 2023 Jun 28.
Sea spray aerosol (SSA) ejected through bursting bubbles at the ocean surface is a complex mixture of salts and organic species. Submicrometer SSA particles have long atmospheric lifetimes and play a critical role in the climate system. Composition impacts their ability to form marine clouds, yet their cloud-forming potential is difficult to study due to their small size. Here, we use large-scale molecular dynamics (MD) simulations as a "computational microscope" to provide never-before-seen views of 40 nm model aerosol particles and their molecular morphologies. We investigate how increasing chemical complexity impacts the distribution of organic material throughout individual particles for a range of organic constituents with varying chemical properties. Our simulations show that common organic marine surfactants readily partition between both the surface and interior of the aerosol, indicating that nascent SSA may be more heterogeneous than traditional morphological models suggest. We support our computational observations of SSA surface heterogeneity with Brewster angle microscopy on model interfaces. These observations indicate that increased chemical complexity in submicrometer SSA leads to a reduced surface coverage by marine organics, which may facilitate water uptake in the atmosphere. Our work thus establishes large-scale MD simulations as a novel technique for interrogating aerosols at the single-particle level.
通过海洋表面破裂气泡喷射出的海喷雾气溶胶(SSA)是盐类和有机物质的复杂混合物。亚微米级的SSA颗粒具有较长的大气寿命,在气候系统中起着关键作用。其成分影响它们形成海洋云的能力,然而由于其尺寸小,它们的云形成潜力很难研究。在这里,我们使用大规模分子动力学(MD)模拟作为“计算显微镜”,以提供前所未有的40纳米模型气溶胶颗粒及其分子形态的视图。我们研究了化学复杂性的增加如何影响一系列具有不同化学性质的有机成分在单个颗粒中有机物质的分布。我们的模拟表明,常见的海洋有机表面活性剂很容易在气溶胶的表面和内部之间分配,这表明新生的SSA可能比传统形态模型所显示的更加不均匀。我们通过对模型界面进行布鲁斯特角显微镜观察来支持我们对SSA表面不均匀性的计算观察。这些观察结果表明,亚微米级SSA中化学复杂性的增加导致海洋有机物的表面覆盖率降低,这可能有助于大气中的水分吸收。因此,我们的工作将大规模MD模拟确立为一种在单颗粒水平上研究气溶胶的新技术。