Department of Chemistry and Biochemistry and Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, USA.
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7550-5. doi: 10.1073/pnas.1300262110. Epub 2013 Apr 25.
The production, size, and chemical composition of sea spray aerosol (SSA) particles strongly depend on seawater chemistry, which is controlled by physical, chemical, and biological processes. Despite decades of studies in marine environments, a direct relationship has yet to be established between ocean biology and the physicochemical properties of SSA. The ability to establish such relationships is hindered by the fact that SSA measurements are typically dominated by overwhelming background aerosol concentrations even in remote marine environments. Herein, we describe a newly developed approach for reproducing the chemical complexity of SSA in a laboratory setting, comprising a unique ocean-atmosphere facility equipped with actual breaking waves. A mesocosm experiment was performed in natural seawater, using controlled phytoplankton and heterotrophic bacteria concentrations, which showed SSA size and chemical mixing state are acutely sensitive to the aerosol production mechanism, as well as to the type of biological species present. The largest reduction in the hygroscopicity of SSA occurred as heterotrophic bacteria concentrations increased, whereas phytoplankton and chlorophyll-a concentrations decreased, directly corresponding to a change in mixing state in the smallest (60-180 nm) size range. Using this newly developed approach to generate realistic SSA, systematic studies can now be performed to advance our fundamental understanding of the impact of ocean biology on SSA chemical mixing state, heterogeneous reactivity, and the resulting climate-relevant properties.
海雾气溶胶(SSA)粒子的生成、大小和化学成分强烈依赖于海水化学性质,而海水化学性质又受到物理、化学和生物过程的控制。尽管在海洋环境中已经进行了数十年的研究,但海洋生物学与 SSA 的物理化学特性之间仍未建立直接的关系。这种关系的建立能力受到阻碍,因为即使在偏远的海洋环境中,SSA 的测量通常也受到压倒性的背景气溶胶浓度的主导。在此,我们描述了一种新开发的方法,可在实验室环境中再现 SSA 的化学复杂性,该方法包括配备实际破浪的独特海洋-大气设施。在天然海水中进行了中观实验,使用受控的浮游植物和异养细菌浓度,结果表明 SSA 的大小和化学混合状态对气溶胶生成机制以及存在的生物物种类型非常敏感。随着异养细菌浓度的增加,SSA 的吸湿性最大程度降低,而浮游植物和叶绿素 a 的浓度降低,这与最小(60-180nm)粒径范围内的混合状态变化直接对应。使用这种新开发的方法生成现实的 SSA,可以进行系统的研究,以提高我们对海洋生物学对 SSA 化学混合状态、非均相反应性以及由此产生的与气候相关的特性的影响的基本认识。