Suppr超能文献

CAICE 研究:实验室中十年海洋-大气实验的见解。

CAICE Studies: Insights from a Decade of Ocean-Atmosphere Experiments in the Laboratory.

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, California 92093, United States.

Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States.

出版信息

Acc Chem Res. 2020 Nov 17;53(11):2510-2520. doi: 10.1021/acs.accounts.0c00504. Epub 2020 Oct 22.

Abstract

Ocean-atmosphere interactions control the composition of the atmosphere, hydrological cycle, and temperature of our planet and affect human and ecosystem health. Our understanding of the impact of ocean emissions on atmospheric chemistry and climate is limited relative to terrestrial systems, despite the fact that oceans cover the majority (71%) of the Earth. As a result, the impact of marine aerosols on clouds represents one of the largest uncertainties in our understanding of climate, which is limiting our ability to accurately predict the future temperatures of our planet. The emission of gases and particles from the ocean surface constitutes an important chemical link between the ocean and atmosphere and is mediated by marine biological, physical, and chemical processes. It is challenging to isolate the role of biological ocean processes on atmospheric chemistry in the real world, which contains a mixture of terrestrial and anthropogenic emissions. One decade ago, the NSF Center for Aerosol Impacts on Chemistry of the Environment (CAICE) took a unique ocean-in-the-laboratory approach to study the factors controlling the chemical composition of marine aerosols and their effects on clouds and climate. CAICE studies have demonstrated that the complex interplay of phytoplankton, bacteria, and viruses exerts significant control over sea spray aerosol composition and the production of volatile organic compounds. In addition, CAICE experiments have explored the physical production mechanisms and their impact on the properties of marine cloud condensation nuclei and ice nucleating particles, thus shedding light on connections between the oceans and cloud formation. As these ocean-in-the-laboratory experiments become more sophisticated, they allow for further exploration of the complexity of the processes that control atmospheric emissions from the ocean, as well as incorporating the effects of atmospheric aging and secondary oxidation processes. In the face of unprecedented global climate change, these results provide key insights into how our oceans and atmosphere are responding to human-induced changes to our planet.This Account presents results from a decade of research by chemists in the NSF Center for Aerosol Impacts on Chemistry of the Environment. The mission of CAICE involves taking a multidisciplinary approach to transform the ability to accurately predict the impact of marine aerosols on our environment by bringing the full real-world chemical complexity of the ocean and atmosphere into the laboratory. Toward this end, CAICE has successfully advanced the study of the ocean-atmosphere system under controlled laboratory settings through the stepwise simulation of physical production mechanisms and incorporation of marine microorganisms, building to systems that replicate real-world chemical complexity. This powerful approach has already made substantial progress in advancing our understanding of how ocean biology and physical processes affect the composition of nascent sea spray aerosol (SSA), as well as yielded insights that help explain longstanding discrepancies in field observations in the marine environment. CAICE research is now using laboratory studies to assess how real-world complexity, such as warming temperatures, ocean acidification, wind speed, biology, and anthropogenic perturbations, impacts the evolution of sea spray aerosol properties, as well as shapes the composition of the marine atmosphere.

摘要

海洋-大气相互作用控制着大气的组成、水文循环和地球温度,并影响着人类和生态系统的健康。尽管海洋覆盖了地球的大部分(71%),但我们对海洋排放物对大气化学和气候影响的了解相对有限,这限制了我们准确预测地球未来温度的能力。海洋气溶胶对云的影响是我们对气候理解中最大的不确定性之一,这限制了我们的能力。海洋表面气体和颗粒的排放构成了海洋与大气之间的重要化学联系,受海洋生物、物理和化学过程的调节。在现实世界中,将生物海洋过程对大气化学的作用与陆地和人为排放的混合物隔离开来具有挑战性。十年前,美国国家科学基金会(NSF)气溶胶对环境化学影响中心(CAICE)采取了独特的实验室方法研究控制海洋气溶胶化学组成及其对云和气候影响的因素。CAICE 的研究表明,浮游植物、细菌和病毒的复杂相互作用对海水喷雾气溶胶组成和挥发性有机化合物的产生具有重要的控制作用。此外,CAICE 实验还探索了物理产生机制及其对海洋云凝结核和冰成核粒子性质的影响,从而揭示了海洋与云形成之间的联系。随着这些实验室海洋实验变得更加复杂,它们可以进一步探索控制海洋向大气排放的过程的复杂性,以及纳入大气老化和二次氧化过程的影响。在面对前所未有的全球气候变化的情况下,这些结果提供了关键的见解,说明我们的海洋和大气如何对我们星球上人为引起的变化做出反应。本账户介绍了 NSF 气溶胶对环境化学影响中心化学家十年研究的结果。CAICE 的任务是通过将海洋和大气的全部真实化学复杂性纳入实验室,采用多学科方法来提高准确预测海洋气溶胶对我们环境影响的能力。为此,CAICE 通过逐步模拟物理产生机制和纳入海洋微生物,成功推进了受控实验室环境下的海洋-大气系统研究,建立了复制真实世界化学复杂性的系统。这种强大的方法已经在推进我们对海洋生物学和物理过程如何影响初生海水喷雾气溶胶(SSA)组成的理解方面取得了重大进展,并提供了有助于解释海洋环境中长期存在的观测差异的见解。CAICE 研究现在正在利用实验室研究评估真实世界的复杂性,例如温度升高、海洋酸化、风速、生物学和人为干扰,如何影响海水喷雾气溶胶性质的演变,并塑造海洋大气的组成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验