Luaces J P, Toro-Urrego N, Otero-Losada M, Capani F
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS.UAI-CONICET, Buenos Aires, Argentina.
Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.
Front Cell Dev Biol. 2023 Jun 15;11:1114769. doi: 10.3389/fcell.2023.1114769. eCollection 2023.
Blood-testis barrier (BTB) creates a particular compartment in the seminiferous epithelium. Contacting Sertoli cell-Sertoli cell plasma membranes possess specialized junction proteins which present a complex dynamic of formation and dismantling. Thus, these specialized structures facilitate germ cell movement across the BTB. Junctions are constantly rearranged during spermatogenesis while the BTB preserves its barrier function. Imaging methods are essential to studying the dynamic of this sophisticated structure in order to understand its functional morphology. Isolated Sertoli cell cultures cannot represent the multiple interactions of the seminiferous epithelium and studies became a fundamental approach to analyze BTB dynamics. In this review, we discuss the contributions of high-resolution microscopy studies to enlarge the body of morphofunctional data to understand the biology of the BTB as a dynamic structure. The first morphological evidence of the BTB was based on a fine structure of the junctions, which was resolved with Transmission Electron Microscopy. The use of conventional Fluorescent Light Microscopy to examine labelled molecules emerged as a fundamental technique for elucidating the precise protein localization at the BTB. Then laser-scanning confocal microscopy allowed the study of three-dimensional structures and complexes at the seminiferous epithelium. Several junction proteins, like the transmembrane, scaffold and signaling proteins, were identified in the testis using traditional animal models. BTB morphology was analyzed in different physiological conditions as the spermatocyte movement during meiosis, testis development, and seasonal spermatogenesis, but also structural elements, proteins, and BTB permeability were studied. Under pathological, pharmacological, or pollutant/toxic conditions, there are significant studies that provide high-resolution images which help to understand the dynamic of the BTB. Notwithstanding the advances, further research using new technologies is required to gain information on the BTB. Super-resolution light microscopy is needed to provide new research with high-quality images of targeted molecules at a nanometer-scale resolution. Finally, we highlight research areas that warrant future studies, pinpointing new microscopy approaches and helping to improve our ability to understand this barrier complexity.
血睾屏障(BTB)在生精上皮中形成了一个特殊的隔室。相邻支持细胞的质膜拥有特殊的连接蛋白,这些蛋白呈现出形成和拆解的复杂动态过程。因此,这些特殊结构促进了生殖细胞穿过血睾屏障的移动。在精子发生过程中,连接不断重新排列,而血睾屏障则保持其屏障功能。成像方法对于研究这种复杂结构的动态变化至关重要,以便了解其功能形态。分离的支持细胞培养不能代表生精上皮的多种相互作用,而研究成为分析血睾屏障动态变化的基本方法。在本综述中,我们讨论了高分辨率显微镜研究的贡献,以扩大形态功能数据的体量,从而理解作为动态结构的血睾屏障的生物学特性。血睾屏障的首个形态学证据基于连接的精细结构,这是通过透射电子显微镜解析出来的。使用传统荧光显微镜检查标记分子成为阐明血睾屏障处精确蛋白质定位的一项基本技术。然后激光扫描共聚焦显微镜使得对生精上皮的三维结构和复合物进行研究成为可能。使用传统动物模型在睾丸中鉴定出了几种连接蛋白,如跨膜蛋白、支架蛋白和信号蛋白。在不同生理条件下分析了血睾屏障的形态,如减数分裂期间精母细胞的移动、睾丸发育和季节性精子发生,同时也研究了结构成分、蛋白质和血睾屏障的通透性。在病理、药理或污染物/毒性条件下,有大量研究提供了高分辨率图像,有助于理解血睾屏障的动态变化。尽管取得了这些进展,但仍需要使用新技术进行进一步研究,以获取有关血睾屏障的信息。需要超分辨率光学显微镜以纳米级分辨率为新研究提供靶向分子的高质量图像。最后,我们强调了值得未来研究的领域,指出了新的显微镜方法,并有助于提高我们理解这种屏障复杂性的能力。