Suppr超能文献

推进基于电子健康记录的心力衰竭治疗药物重新利用模拟试验的疗效预测。

Advancing Efficacy Prediction for EHR-based Emulated Trials in Repurposing Heart Failure Therapies.

作者信息

Zong Nansu, Chowdhury Shaika, Zhou Shibo, Rajaganapathy Sivaraman, Yu Yue, Wang Liewei, Dai Qiying, Li Pengyang, Liu Xiaoke, Bielinski Suzette J, Chen Jun, Chen Yongbin, Cerhan James R

机构信息

Department of Artificial Intelligence and Informatics Research, Mayo Clinic, Rochester, MN, USA.

Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.

出版信息

medRxiv. 2024 Nov 1:2023.05.25.23290531. doi: 10.1101/2023.05.25.23290531.

Abstract

INTRODUCTION

The High mortality rates associated with heart failure (HF) have propelled the strategy of drug repurposing, which seeks new therapeutic uses for existing, approved drugs to enhance the management of HF symptoms effectively. An emerging trend focuses on utilizing real-world data, like EHR, to mimic randomized controlled trials (RCTs) for evaluating treatment outcomes through what are known as emulated trials (ET). Nonetheless, the intricacies inherent in EHR data-comprising detailed patient histories in databases, the omission of certain biomarkers or specific diagnostic tests, and partial records of symptoms-introduce notable discrepancies between EHR data and the stringent standards of RCTs. This gap poses a substantial challenge in conducting an ET to accurately predict treatment efficacy.

OBJECTIVE

The objective of this research is to predict the efficacy of drugs repurposed for HF in randomized trials by leveraging EHR in ET.

METHODS

We proposed an ET framework to predict drug efficacy, integrating target prediction based on biomedical databases with statistical analysis using EHR data. Specifically, we developed a novel target prediction model that learns low-dimensional representations of drug molecules, protein sequences, and diverse biomedical associations from a knowledge graph. Additionally, we crafted strategies to improve the prediction by considering the interactions between HF drugs and biological factors in the context of HF prognostic markers.

RESULTS

Our validation of the drug-target prediction model against the BETA benchmark demonstrated superior performance, with an average AUCROC of 97.7%, PRAUC of 97.4%, F1 score of 93.1%, and a General Score of 96.1%, surpassing existing baseline algorithms. Further analysis of our ET framework on identifying 17 repurposed drugs-derived from 266 phase 3 HF RCTs-using data from 59,000 patients at the Mayo Clinic highlighted the framework's remarkable predictive accuracy. This analysis took into account various factors such as biological variables (e.g., gender, age, ethnicity), HF medications (e.g., ACE inhibitors, Beta-blockers, ARBs, Loop Diuretics), types of HF (HFpEF and HFrEF), confounders, and prognostic markers (e.g., NT-proBNP, bUn, creatinine, and hemoglobin). The ET framework significantly improved the accuracy compared to the baseline efficacy analysis that utilized EHR data. Notably, the best results were improved in AUC-ROC from 75.71% to 93.57% and in PRAUC from 78.66% to 90.34%, compared to the baseline models.

CONCLUSION

Our study presents an ET framework that significantly enhances drug efficacy emulation by integrating EHR-based analysis with target prediction. We demonstrated substantial success in predicting the efficacy of 17 HF drugs repurposed for phase 3 RCTs, showcasing the framework's potential in advancing HF treatment strategies.

摘要

引言

与心力衰竭(HF)相关的高死亡率推动了药物重新利用策略的发展,该策略旨在为现有已获批药物寻找新的治疗用途,以有效加强对HF症状的管理。一个新兴趋势是利用诸如电子健康记录(EHR)等真实世界数据,通过所谓的模拟试验(ET)来模拟随机对照试验(RCT),以评估治疗结果。然而,EHR数据中存在的复杂性——包括数据库中详细的患者病史、某些生物标志物或特定诊断测试的遗漏以及症状的部分记录——导致EHR数据与RCT的严格标准之间存在显著差异。这一差距给进行ET以准确预测治疗效果带来了重大挑战。

目的

本研究的目的是通过在ET中利用EHR来预测用于HF的重新利用药物在随机试验中的疗效。

方法

我们提出了一个用于预测药物疗效的ET框架,将基于生物医学数据库的靶点预测与使用EHR数据的统计分析相结合。具体而言,我们开发了一种新颖的靶点预测模型,该模型从知识图谱中学习药物分子、蛋白质序列和各种生物医学关联的低维表示。此外,我们制定了策略,通过考虑HF药物与HF预后标志物背景下的生物因素之间的相互作用来改进预测。

结果

我们针对BETA基准对药物-靶点预测模型进行的验证显示出卓越的性能,平均曲线下面积(AUCROC)为97.7%,精确召回率曲线下面积(PRAUC)为97.4%,F1分数为93.1%,综合评分为96.1%,超过了现有的基线算法。我们使用梅奥诊所59000名患者的数据,对ET框架在识别源自266项3期HF RCT的17种重新利用药物方面进行的进一步分析突出了该框架显著的预测准确性。该分析考虑了各种因素,如生物学变量(如性别、年龄、种族)、HF药物(如血管紧张素转换酶抑制剂、β受体阻滞剂、血管紧张素受体阻滞剂、袢利尿剂)、HF类型(射血分数保留的HF(HFpEF)和射血分数降低的HF(HFrEF))、混杂因素和预后标志物(如N末端脑钠肽前体(NT-proBNP)、血尿素氮(bUn)、肌酐和血红蛋白)。与利用EHR数据的基线疗效分析相比,ET框架显著提高了准确性。值得注意的是,与基线模型相比,曲线下面积(AUC)-ROC从75.71%提高到93.57%,精确召回率曲线下面积(PRAUC)从78.66%提高到90.34%,取得了最佳结果。

结论

我们的研究提出了一个ET框架,通过将基于EHR的分析与靶点预测相结合,显著增强了药物疗效模拟。我们在预测用于3期RCT的17种HF药物的疗效方面取得了巨大成功,展示了该框架在推进HF治疗策略方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0b/11541661/376f7932b000/nihpp-2023.05.25.23290531v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验