Suppr超能文献

新型药物设计中的多目标优化方法。

Multi-objective optimization methods in novel drug design.

机构信息

Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece.

出版信息

Expert Opin Drug Discov. 2021 Jun;16(6):647-658. doi: 10.1080/17460441.2021.1867095. Epub 2020 Dec 31.

Abstract

: In multi-objective drug design, optimization gains importance, being upgraded to a discipline that attracts its own research. Current strategies are broadly classified into single - objective optimization (SOO) and multi-objective optimization (MOO).: Starting with SOO and the ways used to incorporate multiple criteria into it, the present review focuses on MOO techniques, their comparison, advantages, and restrictions. Pareto analysis and the concept of dominance stand in the core of MOO. The Pareto front, Pareto ranking, and limitations of Pareto-based methods, due to high dimensions and data uncertainty, are outlined. Desirability functions and the weighted sum approaches are described as stand-alone techniques to transform the MOO problem to SOO or in combination with pareto analysis and evolutionary algorithms. Representative applications in different drug research areas are also discussed.: Despite their limitations, the use of combined MOO techniques, as well as being complementary to SOO or in conjunction with artificial intelligence, contributes dramatically to efficient drug design, assisting decisions and increasing success probabilities. For multi-target drug design, optimization is supported by network approaches, while applicability of MOO to other fields like drug technology or biological complexity opens new perspectives in the interrelated fields of medicinal chemistry and molecular biology.

摘要

在多目标药物设计中,优化变得尤为重要,它已经发展成为一个独立的研究领域。目前的策略主要分为单目标优化(SOO)和多目标优化(MOO)。本综述从 SOO 及其将多个标准纳入其中的方法开始,重点介绍 MOO 技术、它们的比较、优点和限制。Pareto 分析和优势概念是 MOO 的核心。概述了 Pareto 前沿、Pareto 排名和基于 Pareto 的方法的限制,由于高维性和数据不确定性。描述了独立的技术,如理想性函数和加权和方法,将 MOO 问题转化为 SOO,或与 Pareto 分析和进化算法相结合。还讨论了不同药物研究领域的代表性应用。尽管存在局限性,但结合使用 MOO 技术,以及与 SOO 互补或与人工智能结合,对高效药物设计有很大的帮助,有助于决策并提高成功的概率。对于多靶点药物设计,网络方法支持优化,而 MOO 在药物技术或生物复杂性等其他领域的适用性为药物化学和分子生物学等相关领域开辟了新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验